Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(51): e2217329119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508671

RESUMO

Although methanediamine (CH2(NH2)2) has historically been the subject of theoretical scrutiny, it has never been isolated to date. Here, we report the preparation of methanediamine (CH2(NH2)2)-the simplest diamine. Low-temperature interstellar analog ices composed of ammonia and methylamine were exposed to energetic electrons which act as proxies for secondary electrons produced in the track of galactic cosmic rays. These experimental conditions, which simulate the conditions within cold molecular clouds, result in radical formation and initiate aminomethyl (CH2NH2) and amino ([Formula: see text]2) radical chemistry. Exploiting tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) to make isomer-specific assignments, methanediamine was identified in the gas phase upon sublimation, while its isomer methylhydrazine (CH3NHNH2) was not observed. The molecular formula was confirmed to be CH6N2 through the use of isotopically labeled reactants. Methanediamine is the simplest molecule to contain the NCN moiety and could be a vital intermediate in the abiotic formation of heterocyclic and aromatic systems such as nucleobases, which all contain the NCN moiety.


Assuntos
Radiação Cósmica , Elétrons , Temperatura Baixa , Espectrometria de Massas
2.
J Am Chem Soc ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370877

RESUMO

Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) are not only fundamental building blocks in the prebiotic synthesis of vital biomolecules such as amino acids and nucleobases of DNA and RNA but also a potential source of the prominent unidentified 6.2 µm interstellar absorption band. Although NPAHs have been detected in meteorites and are believed to be ubiquitous in the universe, their formation mechanisms in deep space have remained largely elusive. Here, we report the first bottom-up formation pathways to the simplest prototype of NPAHs, indole (C8H7N), along with its building blocks pyrrole (C4H5N) and aniline (C6H5NH2) in low-temperature model interstellar ices composed of acetylene (C2H2) and ammonia (NH3). Utilizing the isomer-selective techniques of resonance-enhanced multiphoton ionization and tunable vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry, indole, pyrrole, and aniline were identified in the gas phase, suggesting that they are promising candidates for future astronomical searches in star-forming regions. Our laboratory experiments utilizing infrared spectroscopy and mass spectrometry in tandem with electronic structure calculations reveal critical insights into the reaction pathways toward NPAHs and their precursors, thus advancing our fundamental understanding of the interstellar formation of aromatic proteinogenic amino acids and nucleobases, key classes of molecules central to the Origins of Life.

3.
J Am Chem Soc ; 146(17): 12174-12184, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629886

RESUMO

Orthocarboxylic acids─organic molecules carrying three hydroxyl groups at the same carbon atom─have been distinguished as vital reactive intermediates by the atmospheric science and physical (organic) chemistry communities as transients in the atmospheric aerosol cycle. Predicted short lifetimes and their tendency to dehydrate to a carboxylic acid, free orthocarboxylic acids, signify one of the most elusive classes of organic reactive intermediates, with even the simplest representative methanetriol (CH(OH)3)─historically known as orthoformic acid─not previously been detected experimentally. Here, we report the first synthesis of the previously elusive methanetriol molecule in low-temperature mixed methanol (CH3OH) and molecular oxygen (O2) ices subjected to energetic irradiation. Supported by electronic structure calculations, methanetriol was identified in the gas phase upon sublimation via isomer-selective photoionization reflectron time-of-flight mass spectrometry combined with isotopic substitution studies and the detection of photoionization fragments. The first synthesis and detection of methanetriol (CH(OH)3) reveals its gas-phase stability as supported by a significant barrier hindering unimolecular decomposition. These findings progress our fundamental understanding of the chemistry and chemical bonding of methanetriol, hydroxyperoxymethane (CH3OOOH), and hydroxyperoxymethanol (CH2(OH)OOH), which are all prototype molecules in the oxidation chemistry of the atmosphere.

4.
Chemphyschem ; : e202400837, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363694

RESUMO

Acetaldehyde (CH3CHO) plays a crucial role in the synthesis of prebiotic molecules such as amino acids, sugars, and sugar-related compounds, and in the progress of chain reaction polymerization in deep space. Here, we report the first formation of the cyclic acetaldehyde trimer - paraldehyde (C6H12O3) - in low-temperature interstellar analog ices exposed to energetic irradiation as proxies of galactic cosmic rays (GCRs). Utilizing vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry and isotopic substitution experiments, paraldehyde was identified in the gas phase during the temperature-programmed desorption of the irradiated acetaldehyde ices based on the calculated adiabatic ionization energies and isomer-specific dissociative fragmentation patterns upon photoionization. As acetaldehyde is ubiquitous throughout the interstellar medium and has been tentatively identified in interstellar ices, paraldehyde could have formed in acetaldehyde-containing ices in a cold molecular cloud and is an excellent candidate for gas-phase observation in star-forming regions via radio telescopes. The identification of paraldehyde in the gas phase from the processed acetaldehyde ices advances our understanding of how complex organic molecules can be synthesized through polymerization reactions in extraterrestrial ices exposed to GCRs.

5.
Phys Chem Chem Phys ; 26(36): 23654-23662, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39224052

RESUMO

Ketoaldehydes are key intermediates in biochemical processes including carbohydrate, lipid, and amino acid metabolism. Despite their crucial role in the interstellar synthesis of essential biomolecules necessary for the Origins of Life, their formation mechanisms have largely remained elusive. Here, we report the first bottom-up formation of methylglyoxal (CH3C(O)CHO)-the simplest ketoaldehyde-through the barrierless recombination of the formyl (HCO) radical with the acetyl (CH3CO) radical in low-temperature interstellar ice analogs upon exposure to energetic irradiation as proxies of galactic cosmic rays. Utilizing vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry and isotopic substitution studies, methylglyoxal and its enol tautomer 2-hydroxypropenone (CH3C(OH)CO) were identified in the gas phase during the temperature-programmed desorption of irradiated carbon monoxide-acetaldehyde (CO-CH3CHO) ices, suggesting their potential as promising candidates for future astronomical searches. Once synthesized in cold molecular clouds, methylglyoxal can serve as a key precursor to sugars, sugar acids, and amino acids. Furthermore, this work provides the first experimental evidence for tautomerization of a ketoaldehyde in interstellar ice analogs, advancing our fundamental knowledge of how ketoaldehydes and their enol tautomers can be synthesized in deep space.


Assuntos
Aldeído Pirúvico , Aldeído Pirúvico/química , Gelo , Meio Ambiente Extraterreno/química , Acetaldeído/química , Acetaldeído/análogos & derivados
6.
J Phys Chem A ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373697

RESUMO

Co+(C2H2)n (n = 1-6) complexes produced with laser vaporization in a supersonic molecular beam are studied with infrared photodissociation spectroscopy and computational chemistry. Infrared spectra are measured in the C-H stretching region using the method of tagging with argon atoms to enhance the photodissociation yields. C-H stretch vibrations for all clusters studied are shifted to lower frequencies than those of the well-known acetylene vibrations from ligand → metal charge transfer interactions. The magnitude of the red shifts decreases in the larger clusters as the interaction is distributed over more ligands. Computational studies identify various unreacted complexes with individual acetylene ligands in cation-π bonding configurations as well as reacted isomers in which ligand coupling reactions have taken place. Infrared spectra are consistent only with unreacted structures, even though the formation of reacted structures such as the metal ion-benzene complex is highly exothermic. Large activation barriers are predicted by theory along the reaction coordinates for the n = 2 and 3 complexes, which inhibit reactions in these smaller clusters, and this situation is presumed to persist in larger clusters.

7.
Chemphyschem ; 24(4): e202200660, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36283955

RESUMO

We report the formation of the cyclic methylphosphonic acid trimer [c-(CH3 PO2 )3 ] through condensation reactions during thermal processing of low-temperature methylphosphonic acid samples exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) along with electronic structure calculations. Cyclic methylphosphonic acid trimers are formed in the solid state and detected together with its protonated species in the gas phase upon single photon ionization. Our studies provide an understanding of the preparation of phosphorus-bearing potentially prebiotic molecules and the fundamental knowledge of low-temperature phosphorus chemistry in extraterrestrial environments.

8.
Phys Chem Chem Phys ; 25(26): 17460-17469, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37357555

RESUMO

Enols - tautomers of ketones or aldehydes - are anticipated to be ubiquitous in the interstellar medium and play a key role in the formation of complex organic molecules in deep space, but their fundamental formation mechanisms have remained largely elusive as of now. Here we present a combined experimental and computational study demonstrating the first preparation of propen-2-ol (CH3C(OH)CH2) and its isomer methyl vinyl ether (CH3OCHCH2) in low-temperature acetone (CH3COCH3) ices upon exposure to energetic electrons. Propen-2-ol is the simplest enol tautomer of a ketone. Exploiting tunable vacuum ultraviolet photoionization in conjunction with reflectron time-of-flight mass spectrometry, propen-2-ol and methyl vinyl ether were monitored in the gas phase upon sublimation during the temperature-programmed desorption process suggesting that both isomers are promising candidates for future astronomical searches such as via the James Webb Space Telescope. Electronic structure calculations reveal that the barrier of keto-enol tautomerization can be reduced by more than a factor of two (162 kJ mol-1) through the involvement of solvating water molecules under realistic conditions on interstellar grains. The implicit solvent effects, i.e., the influences of the solvent dipole field on the barrier height are found to be minimal and do not exceed 10 kJ mol-1. Our findings signify a crucial step toward a better understanding of the enolization of ketones in the interstellar medium thus constraining the molecular structures and complexity of molecules that form in extraterrestrial ices - ketones - through non-equilibrium chemistry.

9.
Phys Chem Chem Phys ; 25(2): 936-953, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36285574

RESUMO

We unravel, for the very first time, the formation pathways of hydroxyacetone (CH3COCH2OH), methyl acetate (CH3COOCH3), and 3-hydroxypropanal (HCOCH2CH2OH), as well as their enol tautomers within mixed ices of methanol (CH3OH) and acetaldehyde (CH3CHO) analogous to interstellar ices in the ISM exposed to ionizing radiation at ultralow temperatures of 5 K. Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) and isotopically labeled ices, the reaction products were selectively photoionized allowing for isomer discrimination during the temperature-programmed desorption phase. Based on the distinct mass-to-charge ratios and ionization energies of the identified species, we reveal the formation pathways of hydroxyacetone (CH3COCH2OH), methyl acetate (CH3COOCH3), and 3-hydroxypropanal (HCOCH2CH2OH) via radical-radical recombination reactions and of their enol tautomers (prop-1-ene-1,2-diol (CH3C(OH)CHOH), prop-2-ene-1,2-diol (CH2C(OH)CH2OH), 1-methoxyethen-1-ol (CH3OC(OH)CH2) and prop-1-ene-1,3-diol (HOCH2CHCHOH)) via keto-enol tautomerization. To the best of our knowledge, 1-methoxyethen-1-ol (CH3OC(OH)CH2) and prop-1-ene-1,3-diol (HOCH2CHCHOH) are experimentally identified for the first time. Our findings help to constrain the formation mechanism of hydroxyacetone and methyl acetate detected within star-forming regions and suggest that the hitherto astronomically unobserved isomer 3-hydroxypropanal and its enol tautomers represent promising candidates for future astronomical searches. These enol tautomers may contribute to the molecular synthesis of biologically relevant molecules in deep space due to their nucleophilic character and high reactivity.


Assuntos
Acetatos , Acetona , Isomerismo
10.
J Phys Chem A ; 127(27): 5704-5712, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37369010

RESUMO

Platinum cation complexes with multiple acetylene molecules are studied with mass spectrometry and infrared laser spectroscopy. Complexes of the form Pt+(C2H2)n are produced in a molecular beam by laser vaporization, analyzed with a time-of-flight mass spectrometer, and selected by mass for studies of their vibrational spectroscopy. Photodissociation action spectra in the C-H stretching region are compared to the spectra predicted for different structural isomers using density functional theory. The comparison between experiment and theory demonstrates that platinum forms cation-π complexes with up to three acetylene molecules, producing an unanticipated asymmetric structure for the three-ligand complex. Additional acetylenes form solvation structures around this three-ligand core. Reacted structures that couple acetylene molecules (e.g., to form benzene) are found by theory to be energetically favorable, but their formation is inhibited under the conditions of these experiments by large activation barriers.

11.
J Phys Chem A ; 127(37): 7707-7717, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37682229

RESUMO

FOX-7 (1,1-diamino-2,2-dinitroethylene) was photolyzed with 202 nm photons to probe reaction energies, leading to the decomposition of this energetic material and to compare results from irradiations using lower-energy 532 and 355 nm photons as well as higher-energy electrons. The photolysis occurred at 5 K to suppress thermal reactions, and the solid samples were monitored using Fourier transform infrared spectroscopy (FTIR), which observed carbon dioxide (CO2), carbon monoxide (CO), cyanide (CN-), and cyanate (OCN-) after irradiation. During warming to 300 K, subliming products were detected using electron-impact quadrupole mass spectrometry (EI-QMS) and photoionization time-of-flight mass spectrometry (PI-ReTOF-MS). Five products were observed in QMS: water (H2O), carbon monoxide (CO), nitric oxide (NO), carbon dioxide (CO2), and cyanogen (NCCN). The ReTOF-MS results showed overlap with electron irradiation products but also included three intermediates for the oxidation of ammonia and nitric oxide: hydroxylamine (NH2OH), nitrosamine (NH2NO), and the largest product at 76 amu with the proposed assignment of hydroxyurea (NH2C(O)NHOH). These results highlight the role of reactive oxygen intermediates and nitro-to-nitrite isomerization as key early reactions that lead to a diverse array of decomposition products.

12.
J Phys Chem A ; 127(15): 3390-3401, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37027514

RESUMO

Solid FOX-7 (1,1-diamino-2,2-dinitroethylene), an energetic material of interest due to its high stability and low shock/thermal sensitivity, was exposed to energetic electrons at 5 K to explore the fundamental mechanisms leading to decomposition products and provide a better understanding of the reaction pathways involved. As a result of the radiation exposure, infrared spectroscopy revealed carbon dioxide (CO2) and carbon monoxide (CO) trapped in the FOX-7 matrix, while these compounds along with water (H2O), nitrogen monoxide (NO), and cyanogen (C2N2) were detected exploiting quadrupole mass spectrometry both during irradiation and during the warming phase from 5 to 300 K. Photoionization reflectron time-of-flight mass spectrometry detected small molecules such as ammonia (NH3), nitrogen monoxide (NO), and nitrogen dioxide (NO2) as well as more complex molecules up to 96 amu. Potential reaction pathways are presented and assignments are discussed. Among the reaction mechanisms, the importance of an initial nitro-to-nitrite isomerization is highlighted by the observed decomposition products.

13.
Angew Chem Int Ed Engl ; 62(12): e202218645, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36702757

RESUMO

Glycinal (HCOCH2 NH2 ) and acetamide (CH3 CONH2 ) are simple molecular building blocks of biomolecules in prebiotic chemistry, though their origin on early Earth and formation in interstellar media remain a mystery. These molecules are formed with their tautomers in low temperature interstellar model ices upon interaction with simulated galactic cosmic rays. Glycinal and acetamide are accessed via barrierless radical-radical reactions of vinoxy (⋅CH2 CHO) and acetyl (⋅C(O)CH3 ), and then undergo keto-enol tautomerization. Exploiting tunable photoionization reflectron time-of-flight mass spectroscopy and photoionization efficiency (PIE) curves, these results demonstrate fundamental reaction pathways for the formation of complex organics through non-equilibrium ice reactions in cold molecular cloud environments. These molecules demonstrate an unconventional starting point for abiotic synthesis of organics relevant to contemporary biomolecules like polypeptides and cell membranes in deep space.

14.
Phys Chem Chem Phys ; 24(29): 17449-17461, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35713004

RESUMO

For more than half a century, pericyclic reactions have played an important role in advancing our fundamental understanding of cycloadditions, sigmatropic shifts, group transfer reactions, and electrocyclization reactions. However, the fundamental mechanisms of photochemically activated cheletropic reactions have remained contentious. Here we report on the simplest cheletropic reaction: the [2+1] addition of ground state 18O-carbon monoxide (C18O, X1Σ+) to D2-acetylene (C2D2) photochemically excited to the first excited triplet (T1), second excited triplet (T2), and first excited singlet state (S1) at 5 K, leading to the formation of D2-18O-cyclopropenone (c-C3D218O). Supported by quantum-chemical calculations, our investigation provides persuasive testimony on stepwise cheletropic reaction pathways to cyclopropenone via excited state dynamics involving the T2 (non-adiabatic) and S1 state (adiabatic) of acetylene at 5 K, while the T1 state energetically favors an intermediate structure that directly dissociates after relaxing to the ground state. The agreement between experiments in low temperature ices and the excited state calculations signifies how photolysis experiments coupled with theoretical calculations can untangle polyatomic reactions with relevance to fundamental physical organic chemistry at the molecular level, thus affording a versatile strategy to unravel exotic non-equilibrium chemistries in cyclic, aromatic organics. Distinct from traditional radical-radical pathways leading to organic molecules on ice-coated interstellar nanoparticles (interstellar grains) in cold molecular clouds and star-forming regions, the photolytic formation of cyclopropenone as presented changes the perception of how we explain the formation of complex organics in the interstellar medium eventually leading to the molecular precursors of biorelevant molecules.

15.
J Phys Chem A ; 126(26): 4230-4240, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35749286

RESUMO

Ion-molecule complexes of uranium or thorium singly-charged positive ions bound to cyclooctatetraene (COT), i.e., M+(COT)1,2, are produced by laser ablation and studied with UV laser photodissociation. The ions are selected by mass and excited at 355 or 532 nm, and the ionized dissociation products are detected using a reflectron time-of-flight mass spectrometer. The abundant fragments M+(C6H6), M+(C4H4), and M+(C2H2) occur for complexes of both metals, whereas the M+(C4H2), M+(C3H3), and M+(C5H5) fragments are prominent for uranium complexes but not for thorium. Additional experiments investigate the dissociation of M+(benzene)1,2 ions which may be intermediates in the fragmentation of the COT ions. The experiments are complemented by computational quantum chemistry to investigate the structures and energetics of fragment ions. Various cation-π and metallacycle structures are indicated for different fragment ions. The metal ion-ligand bond energies for corresponding complex ions are systematically greater for the thorium species. The computed thermochemistry makes it possible to explain the mechanistic details of the photochemical fragmentation processes and to reveal new actinide organometallic structures.

16.
J Phys Chem A ; 126(51): 9699-9708, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36534075

RESUMO

Since the observation of the first sulfur-containing molecule, carbon monosulfide (CS), in the interstellar medium (ISM) half a century ago, sulfur-bearing species have attracted great attention from the astrochemistry, astrobiology, and planetary geology communities. Nevertheless, it is still not clear in which forms most of the sulfur resides in molecular clouds, an unsolved problem referred to as "sulfur depletion". Reported herein is the formation of thioformic acid (HCOSH)─the simplest thioacid─in interstellar ice analogues containing carbon monoxide (CO) and hydrogen sulfide (H2S) at 5 K. Utilizing single photoionization reflectron time-of-flight mass spectrometry and isotopically labeled molecules, thioformic acid molecules were selectively photoionized in the temperature-programmed desorption phase. These studies unravel a key reaction pathway to thioformic acid, an organic molecule recently detected toward the giant molecular cloud G+0.693-0.027 and the hot core G31.41+0.31, thus shedding light on interstellar sulfur chemistry.


Assuntos
Gelo , Gelo/análise , Análise Espectral , Espectrometria de Massas , Temperatura
17.
J Phys Chem A ; 126(51): 9680-9690, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36517042

RESUMO

Fe+(acetylene)n ion-molecule complexes are produced in a supersonic molecular beam with pulsed laser vaporization. These ions are mass selected and studied with infrared photodissociation spectroscopy in the C-H stretching region, complemented by computational chemistry calculations. All C-H stretch vibrations are shifted to frequencies lower than the vibrations of isolated acetylene because of the charge transfer that occurs between the metal ion and the molecules. Complexes in the size range of n = 1-4 are found to have structures with individual acetylene molecules bound to the core metal ion via cation-π interactions. The coordination is completed with four ligands in a structure close to a distorted tetrahedron. Larger complexes in the range of n = 5-8 have external acetylene molecules solvating this n = 4 core ion via CH-π bonding to inner-shell ligands. DFT computations predict that quartet spin states are more stable for all complex sizes, but infrared spectra for quartet and doublet spin states are quite similar, precluding definitive determination of the spin states. There is no evidence for any of these complexes having acetylenes coupled into reacted structures. This is consistent with computed thermochemistry, which finds significant activation barriers to such reactions.

18.
J Phys Chem A ; 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35852300

RESUMO

The UV photolysis of solid FOX-7 at 5 K with 355 and 532 nm photons was investigated to unravel initial isomerization and decomposition pathways. Isomer-selective single photon ionization coupled with reflectron time-of-flight mass spectrometry (ReTOF-MS) documented the nitric oxide (NO) loss channel at 355 nm along with a nitro-to-nitrite isomerization, which was observed by using infrared spectroscopy, representing the initial reaction pathway followed by O─NO bond rupture of the nitrite moiety. A residual gas analyzer detected molecular oxygen for the 355 and 532 nm photolysis at a ratio of 4.3 ± 0.3:1, which signifies FOX-7 as an energetic material that provides its own oxidant once the decomposition starts. Overall branching ratios for molecular oxygen versus nitric oxide were derived to be 700 ± 100:1 at 355 nm. It is notable that this is the first time that molecular oxygen was detected as a decomposition product of FOX-7. Computations show that atomic oxygen, which later combines to form molecular oxygen, is likely released from a nitro group involving conical intersections. The condensed phase potential energy profile computed at the CCSD(T) and CASPT2 level correlates well with the experiments and highlights the critical roles of conical intersections, nonadiabatic dynamics, and the encapsulated environment that dictate the mechanism of the reaction through intermolecular hydrogen bonds.

19.
J Chem Phys ; 157(11): 114302, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36137807

RESUMO

The Zn+(methanol) ion molecule complex produced by laser vaporization is studied with photofragment imaging at 280 and 266 nm. Photodissociation produces the methanol cation CH3OH+ via excitation of a charge-transfer excited state. Surprisingly, excitation of bound excited states produces the same fragment via a curve crossing prior to separation of products. Significant kinetic energy release is detected at both wavelengths with isotropic angular distributions. Similar experiments are conducted on the perdeuterated methanol complex. The Zn+ cation is a minor product channel that also exhibits significant kinetic energy release. An energetic cycle using the ionization energies of zinc and methanol together with the kinetic energy release produces an upper limit on the Zn+-methanol bond energy of 33.7 ± 4.2 kcal/mol (1.46 ± 0.18 eV).

20.
J Chem Phys ; 154(6): 064306, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33588546

RESUMO

RGn-Co+(H2O) cation complexes (RG = Ar, Ne, He) are generated in a supersonic expansion by pulsed laser vaporization. Complexes are mass-selected using a time-of-flight spectrometer and studied with infrared laser photodissociation spectroscopy, measuring the respective mass channels corresponding to the elimination of the rare gas "tag" atom. Spectral patterns and theory indicate that the structures of the ions with a single rare gas atom have this bound to the cobalt cation opposite the water moiety in a near-C2v arrangement. The O-H stretch vibrations of the complex are shifted compared to those of water because of the metal cation charge-transfer interaction; these frequencies also vary systematically with the rare gas atom attached. The efficiencies of photodissociation also vary with the rare gas atoms because of their widely different binding energies to the cobalt cation. The spectrum of the argon complex could only be measured when at least three argon atoms were attached. In the case of the helium complex, the low binding energy allows the spectra to be measured for the low-frequency H-O-H scissors bending mode and for the O-D stretches of the deuterated analog. The partially resolved rotational structure for the antisymmetric O-H and O-D stretches reveals the temperature of these complexes (6 K) and establishes the electronic ground state. The helium complex has the same 3B1 ground state as the tag-free complex studied previously by Metz and co-workers ["Dissociation energy and electronic and vibrational spectroscopy of Co+(H2O) and its isotopomers," J. Phys. Chem. A 117, 1254 (2013)], but the A rotational constant is contaminated by vibrational averaging from the bending motion of the helium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA