Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochemistry ; 57(34): 5136-5144, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30053375

RESUMO

The release of insulin from the pancreas is tightly controlled by glucokinase (GCK) activity that couples ß-cell metabolism to changes in blood sugar. Despite having only a single glucose-binding site, GCK displays positive glucose cooperativity. Ex vivo structural studies have identified several potential protein conformations with varying levels of enzymatic activity, yet it is unclear how living cells regulate GCK cooperativity. To better understand the cellular regulation of GCK activation, we developed a homotransfer Förster resonance energy transfer (FRET) GCK biosensor and used polarization microscopy to eliminate fluorescence crosstalk from FRET quantification and improve the signal-to-noise ratio. This approach enhanced sensor contrast compared to that seen with the heterotransfer FRET GCK reporter and allowed observation of individual GCK states using an automated method to analyze FRET data at the pixel level. Mutations known to activate and inhibit GCK activity produced distinct anisotropy distributions, suggesting that at least two conformational states exist in living cells. A high glucose level activated the biosensor in a manner consistent with GCK's enzymology. Interestingly, glucose-free conditions did not affect GCK biosensor FRET, indicating that there is a single low-activity state, which is counter to proposed structural models of GCK cooperativity. Under low-glucose conditions, application of chemical NO donors efficiently shifted GCK to the more active conformation. Notably, GCK activation by mutation, a high glucose level, a pharmacological GCK activator, or S-nitrosylation all shared the same FRET distribution. These data suggest a simplified model for GCK activation in living cells, where post-translational modification of GCK by S-nitrosylation facilitates a single conformational transition that enhances GCK enzymatic activity.


Assuntos
Glucoquinase/metabolismo , Glucose/química , Glucose/metabolismo , Células Secretoras de Insulina/enzimologia , Óxido Nítrico/metabolismo , Células Cultivadas , Ativação Enzimática , Transferência Ressonante de Energia de Fluorescência , Glucoquinase/química , Glucoquinase/genética , Humanos , Mutação , Conformação Proteica
2.
J Biol Chem ; 292(26): 10961-10972, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28487373

RESUMO

SERCA1, the sarco(endo)plasmic reticulum Ca2+-ATPase of skeletal muscle, is essential for muscle relaxation and maintenance of low resting Ca2+ levels in the myoplasm. We recently reported that small ankyrin 1 (sAnk1) interacts with the sarco(endo)plasmic reticulum Ca2+-ATPase in skeletal muscle (SERCA1) to inhibit its activity. We also showed that this interaction is mediated at least in part through sAnk1's transmembrane domain in a manner similar to that of sarcolipin (SLN). Earlier studies have shown that SLN and phospholamban, the other well studied small SERCA-regulatory proteins, oligomerize either alone or together. As sAnk1 is coexpressed with SLN in muscle, we sought to determine whether these two proteins interact with one another when coexpressed exogenously in COS7 cells. Coimmunoprecipitation (coIP) and anisotropy-based FRET (AFRET) assays confirmed this interaction. Our results indicated that sAnk1 and SLN can associate in the sarcoplasmic reticulum membrane and after exogenous expression in COS7 cells in vitro but that their association did not require endogenous SERCA2. Significantly, SLN promoted the interaction between sAnk1 and SERCA1 when the three proteins were coexpressed, and both coIP and AFRET experiments suggested the formation of a complex consisting of all three proteins. Ca2+-ATPase assays showed that sAnk1 ablated SLN's inhibition of SERCA1 activity. These results suggest that sAnk1 interacts with SLN both directly and in complex with SERCA1 and reduces SLN's inhibitory effect on SERCA1 activity.


Assuntos
Anquirinas/metabolismo , Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Anquirinas/genética , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas Musculares/genética , Proteolipídeos/genética , Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
3.
J Biol Chem ; 291(6): 3000-9, 2016 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-26698632

RESUMO

Glucokinase (GCK) controls the rate of glucose metabolism in pancreatic ß cells, and its activity is rate-limiting for insulin secretion. Posttranslational GCK activation can be stimulated through either G protein-coupled receptors or receptor tyrosine kinase signaling pathways, suggesting a common mechanism. Here we show that inhibiting Ca(2+) release from the endoplasmic reticulum (ER) decouples GCK activation from receptor stimulation. Furthermore, pharmacological release of ER Ca(2+) stimulates activation of a GCK optical biosensor and potentiates glucose metabolism, implicating rises in cytoplasmic Ca(2+) as a critical regulatory mechanism. To explore the potential for glucose-stimulated GCK activation, the GCK biosensor was optimized using circularly permuted mCerulean3 proteins. This new sensor sensitively reports activation in response to insulin, glucagon-like peptide 1, and agents that raise cAMP levels. Transient, glucose-stimulated GCK activation was observed in ßTC3 and MIN6 cells. An ER-localized channelrhodopsin was used to manipulate the cytoplasmic Ca(2+) concentration in cells expressing the optimized FRET-GCK sensor. This permitted quantification of the relationship between cytoplasmic Ca(2+) concentrations and GCK activation. Half-maximal activation of the FRET-GCK sensor was estimated to occur at ∼400 nm Ca(2+). When expressed in islets, fluctuations in GCK activation were observed in response to glucose, and we estimated that posttranslational activation of GCK enhances glucose metabolism by ∼35%. These results suggest a mechanism for integrative control over GCK activation and, therefore, glucose metabolism and insulin secretion through regulation of cytoplasmic Ca(2+) levels.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Retículo Endoplasmático/enzimologia , Glucoquinase/metabolismo , Células Secretoras de Insulina/enzimologia , Animais , Linhagem Celular , AMP Cíclico/genética , AMP Cíclico/metabolismo , Retículo Endoplasmático/genética , Ativação Enzimática , Glucoquinase/genética , Glucose/genética , Glucose/metabolismo , Células Secretoras de Insulina/citologia , Masculino , Camundongos
4.
J Biol Chem ; 290(46): 27854-67, 2015 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-26405035

RESUMO

Small ankyrin 1 (sAnk1) is a 17-kDa transmembrane (TM) protein that binds to the cytoskeletal protein, obscurin, and stabilizes the network sarcoplasmic reticulum in skeletal muscle. We report that sAnk1 shares homology in its TM amino acid sequence with sarcolipin, a small protein inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). Here we investigate whether sAnk1 and SERCA1 interact. Our results indicate that sAnk1 interacts specifically with SERCA1 in sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle, and in COS7 cells transfected to express these proteins. This interaction was demonstrated by co-immunoprecipitation and an anisotropy-based FRET method. Binding was reduced ~2-fold by the replacement of all of the TM amino acids of sAnk1 with leucines by mutagenesis. This suggests that, like sarcolipin, sAnk1 interacts with SERCA1 at least in part via its TM domain. Binding of the cytoplasmic domain of sAnk1 to SERCA1 was also detected in vitro. ATPase activity assays show that co-expression of sAnk1 with SERCA1 leads to a reduction of the apparent Ca(2+) affinity of SERCA1 but that the effect of sAnk1 is less than that of sarcolipin. The sAnk1 TM mutant has no effect on SERCA1 activity. Our results suggest that sAnk1 interacts with SERCA1 through its TM and cytoplasmic domains to regulate SERCA1 activity and modulate sequestration of Ca(2+) in the sarcoplasmic reticulum lumen. The identification of sAnk1 as a novel regulator of SERCA1 has significant implications for muscle physiology and the development of therapeutic approaches to treat heart failure and muscular dystrophies linked to Ca(2+) misregulation.


Assuntos
Anquirinas/química , Músculo Esquelético/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/metabolismo , Sequência de Aminoácidos , Animais , Anquirinas/genética , Células COS , Chlorocebus aethiops , Imunoprecipitação , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/química , Estrutura Terciária de Proteína , Proteolipídeos/química , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
5.
J Biol Chem ; 288(3): 1896-906, 2013 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-23223446

RESUMO

Classically, exit from the endoplasmic reticulum (ER) is rate-limiting for secretory protein trafficking because protein folding/assembly occurs there. In this study, we have exploited "hPro-CpepSfGFP," a human proinsulin bearing "superfolder" green fluorescent C-peptide expressed in pancreatic ß cells where it is processed to human insulin and CpepSfGFP. Remarkably, steady-state accumulation of hPro-CpepSfGFP and endogenous proinsulin is in the Golgi region, as if final stages of protein folding/assembly were occurring there. The Golgi regional distribution of proinsulin is dynamic, influenced by fasting/refeeding, and increased with ß cell zinc deficiency. However, coexpression of ER-entrapped mutant proinsulin-C(A7)Y shifts the steady-state distribution of wild-type proinsulin to the ER. Endogenous proinsulin coprecipitates with hPro-CpepSfGFP and even more so with hProC(A7)Y-CpepSfGFP. Using Cerulean and Venus-tagged proinsulins, we find that both WT-WT and WT-mutant proinsulin pairs exhibit FRET. The data demonstrate that wild-type proinsulin dimerizes within the ER but accumulates at a poorly recognized slow step within the Golgi region, reflecting either slow kinetics of proinsulin hexamerization, steps in formation of nascent secretory granules, or other unknown molecular events. However, in the presence of ongoing misfolding of a subpopulation of proinsulin in ß cells, the rate-limiting step in transport of the remaining proinsulin shifts to the ER.


Assuntos
Peptídeo C/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Peptídeo C/química , Peptídeo C/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Dimerização , Retículo Endoplasmático/genética , Retículo Endoplasmático/ultraestrutura , Expressão Gênica , Complexo de Golgi/genética , Complexo de Golgi/ultraestrutura , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Insulina/química , Insulina/genética , Células Secretoras de Insulina/citologia , Cinética , Camundongos , Microscopia Confocal , Plasmídeos , Ligação Proteica , Dobramento de Proteína , Transporte Proteico , Ratos , Transfecção
6.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 5): 767-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633585

RESUMO

Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Šresolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. ß-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.


Assuntos
Proteínas de Fluorescência Verde/química , Substituição de Aminoácidos , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Engenharia de Proteínas/métodos , Serina/química
7.
J Biol Chem ; 286(19): 16768-74, 2011 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454584

RESUMO

Glucagon-like peptide 1 (GLP-1) potentiates glucose-stimulated insulin secretion from pancreatic ß cells, yet does not directly stimulate secretion. The mechanisms underlying this phenomenon are incompletely understood. Here, we report that GLP-1 augments glucose-dependent rises in NAD(P)H autofluorescence in both ßTC3 insulinoma cells and islets in a manner consistent with post-translational activation of glucokinase (GCK). GLP-1 treatment increased GCK activity and enhanced GCK S-nitrosylation in ßTC3 cells. A 2-fold increase in S-nitrosylated GCK was also observed in mouse islets. Furthermore, GLP-1 activated a FRET-based GCK reporter in living cells. Activation of this reporter was sensitive to inhibition of nitric-oxide synthase (NOS), and incorporating the S-nitrosylation-blocking V367M mutation into this sensor prevented activation by GLP-1. GLP-1 potentiation of the glucose-dependent increase in islet NAD(P)H autofluorescence was also sensitive to a NOS inhibitor, whereas NOS inhibition did not affect the response to glucose alone. Expression of the GCK(V367M) mutant also blocked GLP-1 potentiation of the NAD(P)H response to glucose in ßTC3 cells, but did not significantly affect metabolism of glucose in the absence of GLP-1. Co-expression of WT or mutant GCK proteins with a sensor for insulin secretory granule fusion also revealed that blockade of post-translational GCK S-nitrosylation diminished the effects of GLP-1 on granule exocytosis by ∼40% in ßTC3 cells. These results suggest that post-translational activation of GCK is an important mechanism for mediating the insulinotropic effects of GLP-1.


Assuntos
Regulação da Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucoquinase/metabolismo , Células Secretoras de Insulina/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Apoptose , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Incretinas/metabolismo , Insulina/metabolismo , Insulinoma/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Óxido Nítrico Sintase/metabolismo , Transdução de Sinais , Suínos
8.
Am J Physiol Endocrinol Metab ; 303(4): E464-74, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22669246

RESUMO

The glucose-dependent secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1) is a critical step in the regulation of glucose homeostasis. Two molecular mechanisms have separately been suggested as the primary mediator of intestinal glucose-stimulated GLP-1 secretion (GSGS): one is a metabotropic mechanism requiring the sweet taste receptor type 2 (T1R2) + type 3 (T1R3) while the second is a metabolic mechanism requiring ATP-sensitive K(+) (K(ATP)) channels. By quantifying sugar-stimulated hormone secretion in receptor knockout mice and in rats receiving Roux-en-Y gastric bypass (RYGB), we found that both of these mechanisms contribute to GSGS; however, the mechanisms exhibit different selectivity, regulation, and localization. T1R3(-/-) mice showed impaired glucose and insulin homeostasis during an oral glucose challenge as well as slowed insulin granule exocytosis from isolated pancreatic islets. Glucose, fructose, and sucralose evoked GLP-1 secretion from T1R3(+/+), but not T1R3(-/-), ileum explants; this secretion was not mimicked by the K(ATP) channel blocker glibenclamide. T1R2(-/-) mice showed normal glycemic control and partial small intestine GSGS, suggesting that T1R3 can mediate GSGS without T1R2. Robust GSGS that was K(ATP) channel-dependent and glucose-specific emerged in the large intestine of T1R3(-/-) mice and RYGB rats in association with elevated fecal carbohydrate throughout the distal gut. Our results demonstrate that the small and large intestines utilize distinct mechanisms for GSGS and suggest novel large intestine targets that could mimic the improved glycemic control seen after RYGB.


Assuntos
Derivação Gástrica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/metabolismo , Animais , Células Cultivadas , Fezes/química , Frutose/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/farmacologia , Teste de Tolerância a Glucose , Glibureto/farmacologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Hipoglicemiantes/farmacologia , Íleo/efeitos dos fármacos , Íleo/metabolismo , Insulina/metabolismo , Secreção de Insulina , Intestino Grosso/efeitos dos fármacos , Intestino Grosso/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Canais KATP/metabolismo , Camundongos , Ratos , Sacarose/análogos & derivados , Sacarose/farmacologia , Papilas Gustativas/efeitos dos fármacos
9.
Cell Rep ; 24(4): 1060-1070.e4, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30044973

RESUMO

Complex cell behaviors require dynamic control over non-muscle myosin II (NMMII) regulatory light chain (RLC) phosphorylation. Here, we report that RLC phosphorylation can be tracked in living cells and organisms using a homotransfer fluorescence resonance energy transfer (FRET) approach. Fluorescent protein-tagged RLCs exhibit FRET in the dephosphorylated conformation, permitting identification and quantification of RLC phosphorylation in living cells. This approach is versatile and can accommodate several different fluorescent protein colors, thus enabling multiplexed imaging with complementary biosensors. In fibroblasts, dynamic myosin phosphorylation was observed at the leading edge of migrating cells and retracting structures where it persistently colocalized with activated myosin light chain kinase. Changes in myosin phosphorylation during C. elegans embryonic development were tracked using polarization inverted selective-plane illumination microscopy (piSPIM), revealing a shift in phosphorylated myosin localization to a longitudinal orientation following the onset of twitching. Quantitative analyses further suggested that RLC phosphorylation dynamics occur independently from changes in protein expression.


Assuntos
Técnicas Biossensoriais/métodos , Caenorhabditis elegans/metabolismo , Miosina Tipo II/metabolismo , Animais , Movimento Celular , Fosforilação
10.
Elife ; 72018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968564

RESUMO

Genetically encoded fluorescent biosensors have revolutionized the study of signal transduction by enabling the real-time tracking of signaling activities in live cells. Investigating the interaction between signaling networks has become increasingly important to understanding complex cellular phenomena, necessitating an update of the biosensor toolkit to allow monitoring and perturbing multiple activities simultaneously in the same cell. We therefore developed a new class of fluorescent biosensors based on homo-FRET, deemed FLuorescence Anisotropy REporters (FLAREs), which combine the multiplexing ability of single-color sensors with a quantitative, ratiometric readout. Using an array of color variants, we were able to demonstrate multiplexed imaging of three activity reporters simultaneously in the same cell. We further demonstrate the compatibility of FLAREs for use with optogenetic tools as well as intravital two-photon imaging.


Assuntos
Técnicas Biossensoriais , Polarização de Fluorescência/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cor , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/metabolismo , Citosol/ultraestrutura , Transferência Ressonante de Energia de Fluorescência/instrumentação , Corantes Fluorescentes/síntese química , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Transfecção , Quinases da Família src/genética , Quinases da Família src/metabolismo , Proteína Vermelha Fluorescente
11.
Nat Commun ; 6: 7670, 2015 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-26158227

RESUMO

To perform quantitative live cell imaging, investigators require fluorescent reporters that accurately report protein localization and levels, while minimally perturbing the cell. Yet, within the biochemically distinct environments of cellular organelles, popular fluorescent proteins (FPs), including EGFP, can be unreliable for quantitative imaging, resulting in the underestimation of protein levels and incorrect localization. Specifically, within the secretory pathway, significant populations of FPs misfold and fail to fluoresce due to non-native disulphide bond formation. Furthermore, transmembrane FP-fusion constructs can disrupt organelle architecture due to oligomerizing tendencies of numerous common FPs. Here, we describe a powerful set of bright and inert FPs optimized for use in multiple cellular compartments, especially oxidizing environments and biological membranes. Also, we provide new insights into the use of red FPs in the secretory pathway. Our monomeric 'oxFPs' finally resolve long-standing, underappreciated and important problems of cell biology and should be useful for a number of applications.


Assuntos
Membrana Celular/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas Luminescentes/metabolismo , Animais , Proteínas de Bactérias/química , Linhagem Celular Tumoral , Cães , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/química , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Imagem Óptica/métodos , Coloração e Rotulagem , Proteína Vermelha Fluorescente
12.
Mol Endocrinol ; 26(9): 1617-29, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22771492

RESUMO

Glucokinase (GCK) association with insulin-secretory granules is controlled by interaction with nitric oxide synthase (NOS) and is reversed by GCK S-nitrosylation. Nonetheless, the function of GCK sequestration on secretory granules is unknown. Here we report that the S-nitrosylation blocking V367M mutation prevents GCK accumulation on secretory granules by inhibiting association with NOS. Expression of this mutant is reduced compared with a second S-nitrosylation blocking GCK mutant (C371S) that accumulates to secretory granules and is expressed at levels greater than wild type. Even so, the rate of degradation for wild type and mutant GCK proteins were not significantly different from one another, and neither mutation disrupted the ability of GCK to be ubiquitinated. Furthermore, gene silencing of NOS reduced endogenous GCK content but did not affect ß-actin content. Treatment of GCK(C371S) expressing cells with short interfering RNA specific for NOS also blocked accumulation of this protein to secretory granules and reduced expression levels to that of GCK(V367M). Conversely, cotransfection of catalytically inactive NOS increased GCK-mCherry levels. Expression of GCK(C371S) in ßTC3 cells enhanced glucose metabolism compared with untransfected cells and cells expressing wild type GCK, even though this mutant has slightly reduced enzymatic activity in vitro. Finally, molecular dynamics simulations revealed that V367M induces conformational changes in GCK that are similar to S-nitrosylated GCK, thereby suggesting a mechanism for V367M-inhibition of NOS association. Our findings suggest that sequestration of GCK on secretory granules regulates cellular GCK protein content, and thus cellular GCK activity, by acting as a storage pool for GCK proteins.


Assuntos
Glucoquinase/metabolismo , Óxido Nítrico Sintase/metabolismo , Vesículas Secretórias/metabolismo , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Glucoquinase/genética , Humanos , Óxido Nítrico Sintase/genética
13.
PLoS One ; 6(3): e17896, 2011 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-21479270

RESUMO

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to rationally target specific amino acids for optimization by site-directed mutagenesis. Optimization of residues in strands 7 and 8 of the ß-barrel improved the quantum yield of Cerulean from 0.48 to 0.60. Further optimization by incorporating the wild-type T65S mutation in the chromophore improved the quantum yield to 0.87. This variant, mCerulean3, is 20% brighter and shows greatly reduced fluorescence photoswitching behavior compared to the recently described mTurquoise fluorescent protein in vitro and in living cells. The fluorescence lifetime of mCerulean3 also fits to a single exponential time constant, making mCerulean3 a suitable choice for fluorescence lifetime microscopy experiments. Furthermore, inclusion of mCerulean3 in a fusion protein with mVenus produced FRET ratios with less variance than mTurquoise-containing fusions in living cells. Thus, mCerulean3 is a bright, photostable cyan fluorescent protein which possesses several characteristics that are highly desirable for FRET experiments.


Assuntos
Fluorescência , Proteínas Luminescentes/metabolismo , Engenharia de Proteínas/métodos , Animais , Células COS , Sobrevivência Celular , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Vetores Genéticos , Células HeLa , Humanos , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA