Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Breed ; 42(10): 60, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309488

RESUMO

Pre -harvest sprouting (PHS) is an important problem in cereal production reducing yield and grain quality. After decades of improvement, triticale remains particularly susceptible to PHS but no resistance genes or QTLs were identified so far in this species. As wheat shares the A and B genomes with triticale, wheat PHS resistance genes can be introgressed into triticale genome by recombination after interspecific crosses. In this project, three PHS resistance genes have been transferred from wheat to triticale by marker-assisted interspecific crosses, followed by four backcrosses. The gene TaPHS1 from the 3AS chromosome of cultivar Zenkoujikomugi (Zen) and the TaMKK3 and TaQsd1, respectively located on the 4AL and 5BL chromosomes derived both from cultivar Aus1408, were pyramided in the triticale cultivar Cosinus. Only the TaPHS1 gene increases consistently the PHS resistance in triticale. The lack of efficacy of the other two genes, especially TaQsd1, could be the result of an imperfect linkage between the marker and the gene of interest. The introduction of PHS resistance genes did not alter agronomic nor disease resistance performances of triticale. This approach leads to two new, agronomically performant and PHS-resistant triticale cultivars. Today, two breeding triticale lines are ready to enter the official registration process.

2.
Phytopathology ; 108(5): 568-581, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29210601

RESUMO

Quantitative resistance is likely to be more durable than major gene resistance for controlling Septoria tritici blotch (STB) on wheat. Earlier studies hypothesized that resistance affecting the degree of host damage, as measured by the percentage of leaf area covered by STB lesions, is distinct from resistance that affects pathogen reproduction, as measured by the density of pycnidia produced within lesions. We tested this hypothesis using a collection of 335 elite European winter wheat cultivars that was naturally infected by a diverse population of Zymoseptoria tritici in a replicated field experiment. We used automated image analysis of 21,420 scanned wheat leaves to obtain quantitative measures of conditional STB intensity that were precise, objective, and reproducible. These measures allowed us to explicitly separate resistance affecting host damage from resistance affecting pathogen reproduction, enabling us to confirm that these resistance traits are largely independent. The cultivar rankings based on host damage were different from the rankings based on pathogen reproduction, indicating that the two forms of resistance should be considered separately in breeding programs aiming to increase STB resistance. We hypothesize that these different forms of resistance are under separate genetic control, enabling them to be recombined to form new cultivars that are highly resistant to STB. We found a significant correlation between rankings based on automated image analysis and rankings based on traditional visual scoring, suggesting that image analysis can complement conventional measurements of STB resistance, based largely on host damage, while enabling a much more precise measure of pathogen reproduction. We showed that measures of pathogen reproduction early in the growing season were the best predictors of host damage late in the growing season, illustrating the importance of breeding for resistance that reduces pathogen reproduction in order to minimize yield losses caused by STB. These data can already be used by breeding programs to choose wheat cultivars that are broadly resistant to naturally diverse Z. tritici populations according to the different classes of resistance.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Ascomicetos/patogenicidade , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Folhas de Planta , Característica Quantitativa Herdável , Triticum/microbiologia
3.
Appl Environ Microbiol ; 82(7): 2121-2131, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26826229

RESUMO

Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Grão Comestível/microbiologia , Fungos/isolamento & purificação , Aerossóis/análise , Microbiologia do Ar , Biodiversidade , Fungos/classificação , Fungos/genética , Humanos , Exposição Ocupacional , Filogenia , Solo/química
4.
New Phytol ; 212(3): 780-791, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27381250

RESUMO

Community analyses of arbuscular mycorrhizal fungi (AMF) using ribosomal small subunit (SSU) or internal transcribed spacer (ITS) DNA sequences often suffer from low resolution or coverage. We developed a novel sequencing based approach for a highly resolving and specific profiling of AMF communities. We took advantage of previously established AMF-specific PCR primers that amplify a c. 1.5-kb long fragment covering parts of SSU, ITS and parts of the large ribosomal subunit (LSU), and we sequenced the resulting amplicons with single molecule real-time (SMRT) sequencing. The method was applicable to soil and root samples, detected all major AMF families and successfully discriminated closely related AMF species, which would not be discernible using SSU sequences. In inoculation tests we could trace the introduced AMF inoculum at the molecular level. One of the introduced strains almost replaced the local strain(s), revealing that AMF inoculation can have a profound impact on the native community. The methodology presented offers researchers a powerful new tool for AMF community analysis because it unifies improved specificity and enhanced resolution, whereas the drawback of medium sequencing throughput appears of lesser importance for low-diversity groups such as AMF.


Assuntos
Glomeromycota/fisiologia , Micorrizas/fisiologia , DNA Fúngico/genética , Óperon/genética , RNA Ribossômico/genética , Análise de Sequência de DNA , Microbiologia do Solo
5.
Theor Appl Genet ; 127(3): 573-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24306318

RESUMO

Stagonospora nodorum glume blotch (SNG), caused by the necrotrophic fungus Stagonospora nodorum, is one of the economically important diseases of bread wheat (Triticum aestivum L.). Resistance to SNG is known to be quantitative and previous studies of a recombinant inbred line (RIL) population identified a major quantitative trait locus (QTL) for resistance to SNG on the short arm of chromosome 3B. To localize this QTL (QSng.sfr-3BS) with high resolution, we constructed a genetic map for the QTL target region using information from sequenced flow-sorted chromosomes 3B of the two parental cultivars 'Arina' and 'Forno', the physical map of chromosome 3B of cultivar 'Chinese Spring' and BAC-clone sequences. The mapping population of near-isogenic lines (NIL) was evaluated for SNG resistance in field infection tests. NILs segregated for disease resistance as well as for plant height; additionally, we observed a high environmental influence on the trait. Our analysis detected a strong negative correlation of SNG resistance and plant height. Further analysis of the target region identified two linked loci associated with SNG resistance. One of them was also associated with plant height, revealing an effect of QSng.sfr-3BS on plant height that was hidden in the RIL population. This result demonstrates an unexpectedly high genetic complexity of resistance controlled by QSng.sfr-3BS and shows the importance of the study of QTL in mendelized form in NILs.


Assuntos
Ascomicetos , Resistência à Doença/genética , Genes de Plantas , Locos de Características Quantitativas , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Loci Gênicos , Marcadores Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
6.
Theor Appl Genet ; 127(9): 2011-28, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25112204

RESUMO

KEY MESSAGE: We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL. The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas , Ligação Genética , Fenótipo
7.
Elife ; 122023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526647

RESUMO

Plant secondary metabolites that are released into the rhizosphere alter biotic and abiotic soil properties, which in turn affect the performance of other plants. How this type of plant-soil feedback affects agricultural productivity and food quality in the field in the context of crop rotations is unknown. Here, we assessed the performance, yield and food quality of three winter wheat varieties growing in field plots whose soils had been conditioned by either wild type or benzoxazinoid-deficient bx1 maize mutant plants. Following maize cultivation, we detected benzoxazinoid-dependent chemical and microbial fingerprints in the soil. The benzoxazinoid fingerprint was still visible during wheat growth, but the microbial fingerprint was no longer detected. Wheat emergence, tillering, growth, and biomass increased in wild type conditioned soils compared to bx1 mutant conditioned soils. Weed cover was similar between soil conditioning treatments, but insect herbivore abundance decreased in benzoxazinoid-conditioned soils. Wheat yield was increased by over 4% without a reduction in grain quality in benzoxazinoid-conditioned soils. This improvement was directly associated with increased germination and tillering. Taken together, our experiments provide evidence that soil conditioning by plant secondary metabolite producing plants can increase yield via plant-soil feedbacks under agronomically realistic conditions. If this phenomenon holds true across different soils and environments, optimizing root exudation chemistry could be a powerful, genetically tractable strategy to enhance crop yields without additional inputs.


Assuntos
Benzoxazinas , Solo , Solo/química , Retroalimentação , Benzoxazinas/metabolismo , Agricultura , Zea mays/metabolismo , Grão Comestível/metabolismo , Triticum
8.
Front Genet ; 13: 988031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246643

RESUMO

The increased emergence of cereal stem rust in southern and western Europe, caused by the pathogen Puccinia graminis, and the prevalence of alternate (sexual) host, Berberis species, have regained attention as the sexual host may serve as source of novel pathogen variability that may pose a threat to cereal supply. The main objective of the present study was to investigate the functional role of Berberis species in the current epidemiological situation of cereal stem rust in Europe. Surveys in 11 European countries were carried out from 2018 to 2020, where aecial infections from five barberry species were collected. Phylogenetic analysis of 121 single aecial clusters of diverse origin using the elongation factor 1-α gene indicated the presence of different special forms (aka formae speciales) of P. graminis adapted to different cereal and grass species. Inoculation studies using aecial clusters from Spain, United Kingdom, and Switzerland resulted in 533 stem rust isolates sampled from wheat, barley, rye, and oat, which confirmed the presence of multiple special forms of P. graminis. Microsatellite marker analysis of a subset of 192 sexually-derived isolates recovered on wheat, barley and rye from the three populations confirmed the generation of novel genetic diversity revealed by the detection of 135 multilocus genotypes. Discriminant analysis of principal components resulted in four genetic clusters, which grouped at both local and country level. Here, we demonstrated that a variety of Berberis species may serve as functional alternate hosts for cereal stem rust fungi and highlights the increased risks that the sexual cycle may pose to cereal production in Europe, which calls for new initiatives within rust surveillance, epidemiological research and resistance breeding.

9.
BMC Evol Biol ; 11: 188, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21718545

RESUMO

BACKGROUND: Monoculture, multi-cropping and wider use of highly resistant cultivars have been proposed as mechanisms to explain the elevated rate of evolution of plant pathogens in agricultural ecosystems. We used a mark-release-recapture experiment with the wheat pathogen Phaeosphaeria nodorum to evaluate the impact of two of these mechanisms on the evolution of a pathogen population. Nine P. nodorum isolates marked with ten microsatellite markers and one minisatellite were released onto five replicated host populations to initiate epidemics of Stagonospora nodorum leaf blotch. The experiment was carried out over two consecutive host growing seasons and two pathogen collections were made during each season. RESULTS: A total of 637 pathogen isolates matching the marked inoculants were recovered from inoculated plots over two years. Genetic diversity in the host populations affected the evolution of the corresponding P. nodorum populations. In the cultivar mixture the relative frequencies of inoculants did not change over the course of the experiment and the pathogen exhibited a low variation in selection coefficients. CONCLUSIONS: Our results support the hypothesis that increasing genetic heterogeneity in host populations may retard the rate of evolution in associated pathogen populations. Our experiment also provides indirect evidence of fitness costs associated with host specialization in P. nodorum as indicated by differential selection during the pathogenic and saprophytic phases.


Assuntos
Ascomicetos/fisiologia , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Triticum/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Variação Genética , Interações Hospedeiro-Patógeno , Repetições de Microssatélites , Triticum/genética
10.
Phytopathology ; 100(9): 855-62, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20701482

RESUMO

We conducted a 2-year mark-release-recapture field experiment to quantify the relative contributions of immigration and sexual and asexual reproduction to epidemics of Stagonospora nodorum blotch caused by Phaeosphaeria nodorum. The epidemic was initiated using nine genetically distinct P. nodorum isolates. Infected plants were sampled four times across two growing seasons. In total, 1,286 isolates were recovered and assayed with 10 microsatellite markers and 1 minisatellite marker. The proportion of isolates having multilocus haplotypes (MLHTs) identical to the inoculated isolates decreased steadily from 86% in the first collection to 25% in the fourth collection. The novel isolates that had different MLHTs compared with the marked inoculants originated through immigration and sexual recombination. By the end of the experiment, nearly three-quarters of the novel isolates originated from sexual recombination. Our results indicate that recombinant offspring and airborne immigrant ascospores can make significant contributions to epidemics of Stagonospora nodorum blotch during a growing season.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Recombinação Genética/genética , Triticum/microbiologia , Alelos , Variação Genética
11.
Front Plant Sci ; 10: 1745, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063910

RESUMO

Identifying opportunities and limitations for closing yield gaps is essential for setting right the efforts dedicated to improve germplasm and agronomic practices. This study analyses genotypes × environments interaction (G × E), genetic progress, and grain yield stability under contrasting production systems. For this, we analyzed datasets obtained from three Swiss trial-networks of winter wheat that were designed to evaluate genotypes under organic farming conditions, conventional management with low-inputs (150 kg nitrogen (N) ha-1 with no fungicide application) and conventional management with high-inputs (170 kg N ha-1 with fungicide application). The datasets covered the periods from 1998 to 2018 for organic and conventional management with low-inputs and from 2008 to 2018 for conventional management with high-inputs. The trial-networks evaluated each year an average of 36 winter wheat genotypes that included released varieties, advanced breeding lines, and lines for registration and post-registration in Switzerland. We investigated within each trial-network the influence of years, genotypes, environments and their interactions on the total variance in grain yield and grain N concentration using variance components analyses. We further applied mixed models with regression features to dissect genetic components due to breeding efforts from non-genetic components. The genotype as a single factor or as a factor interacting with the environment or the year (G × E, G × year, and G × E × year) explained 13% (organic), 20% (conventional low-inputs), and 24% (conventional high-inputs) of the variance in grain yield, while the corresponding values for grain N concentration were 29%, 25%, and 32%. Grain yield has stagnated since 1990 for conventional systems while the trend under organic management was slightly negative. The dissection of a genetic component from the grain yield trends under conventional management showed that genetic improvements contributed with 0.58 and 0.68 t ha-1 y-1 with low- and high- inputs, respectively. In contrast, a significant genetic source in the grain yield trend under organic management was not detected. Therefore, breeding efforts have been less effective on the wheat productivity for organic farming conditions than for conventional ones.

12.
Front Plant Sci ; 9: 1195, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174678

RESUMO

Producing quantitative and reliable measures of crop disease is essential for resistance breeding, but is challenging and time consuming using traditional phenotyping methods. Hyperspectral remote sensing has shown potential for the detection of plant diseases, but its utility for phenotyping large and diverse populations of plants under field conditions requires further evaluation. In this study, we collected canopy hyperspectral data from 335 wheat varieties using a spectroradiometer, and we investigated the use of canopy reflectance for detecting the Septoria tritici blotch (STB) disease and for quantifying the severity of infection. Canopy- and leaf-level infection metrics of STB based on traditional visual assessments and automated analyses of leaf images were used as ground truth data. Results showed (i) that canopy reflectance and the selected spectral indices show promise for quantifying STB infections, and (ii) that the normalized difference water index (NDWI) showed the best performance in detecting STB compared to other spectral indices. Moreover, partial least squares (PLS) regression models allowed for an improvement in the prediction of STB metrics. The PLS discriminant analysis (PLSDA) model calibrated based on the spectral data of four reference varieties was able to discriminate between the diseased and healthy canopies among the 335 varieties with an accuracy of 93% (Kappa = 0.60). Finally, the PLSDA model predictions allowed for the identification of wheat genotypes that are potentially more susceptible to STB, which was confirmed by the STB visual assessment. This study demonstrates the great potential of using canopy hyperspectral remote sensing to improve foliar disease assessment and to facilitate plant breeding for disease resistance.

13.
Artigo em Inglês | MEDLINE | ID: mdl-30499757

RESUMO

To assess the in vitro activity of three phenolic acids (ferulic acid, p-hydroxybenzoic acid, vanillic acid) and two flavonols (quercetin, rutin) on mycelial growth and mycotoxin accumulation of Fusarium graminearum (FG), F. langsethiae (FL) and F. poae (FP), two different approaches were chosen. First, grains from oat varieties were inoculated with a suspension of three FL isolates to determine the influence of phenolic compounds on the accumulation of mycotoxins. The oat variety Zorro showed a tendency for lower accumulation of T-2/HT-2, diacetoxyscirpenol and neosolaniol. Second, a mycelium growth assay was conducted to follow FG, FL and FP growth on cereal based media supplemented with phenolic compounds. Increasing concentrations of ferulic acid substantially inhibited growth of FG and FL, while FP growth was reduced to 57%. In contrast, p-hydroxybenzoic acid, vanillic acid, quercetin, and rutin slightly stimulated mycelium growth. Results about mycotoxin production in cereal based media were less conclusive.


Assuntos
Grão Comestível/microbiologia , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Hidroxibenzoatos/farmacologia , Micotoxinas/biossíntese , Quercetina/farmacologia , Rutina/farmacologia , Fusarium/metabolismo
14.
Toxins (Basel) ; 10(1)2018 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361693

RESUMO

Recent increases of Fusarium head blight (FHB) disease caused by infections with F. poae (FP) and F. langsethiae (FL) have been observed in oats. These pathogens are producers of nivalenol (NIV) and T-2/HT-2 toxin (T-2/HT-2), respectively, which are now considered major issues for cereal food and feed safety. To date, the impact of FP and FL on oat grains has not yet been identified, and little is known about oat resistance elements against these pathogens. In the present study, the impact of FL and FP on oat grains was assessed under different environmental conditions in field experiments with artificial inoculations. The severity of FP and FL infection on grains were compared across three field sites, and the resistance against NIV and T-2/HT2 accumulation was assessed for seven oat genotypes. Grain weight, ß-glucan content, and protein content were compared between infected and non-infected grains. Analyses of grain infection showed that FL was able to cause infection on the grain only in the field site with the highest relative humidity, whereas FP infected grains in all field sites. The FP infection of grains resulted in NIV contamination (between 30-500 µg/kg). The concentration of NIV in grains was not conditioned by environmental conditions. FL provoked an average contamination of grains with T-2/HT-2 (between 15-132 µg/kg). None of the genotypes was able to fully avoid toxin accumulation. The general resistance of oat grains against toxin accumulation was weak, and resistance against NIV accumulation was strongly impacted by the interaction between the genotype and the environment. Only the genotype with hull-less grains showed partial resistance to both NIV and T-2/HT-2 contamination. FP and FL infections could change the ß-glucan content in grains, depending on the genotypes and environmental conditions. FP and FL did not have a significant impact on the thousand kernel weight (TKW) and protein content. Hence, resistance against toxin accumulation remains the only indicator of FHB resistance in oat. Our results highlight the need for new oat genotypes with enhanced resistance against both NIV and T-2/HT-2 to ensure food and feed safety.


Assuntos
Avena/microbiologia , Grão Comestível/microbiologia , Fusarium , Micotoxinas/análise , Avena/genética , Resistência à Doença , Grão Comestível/química , Genótipo , Doenças das Plantas/microbiologia
15.
Mol Plant Microbe Interact ; 20(12): 1535-44, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17990961

RESUMO

Botrytis cinerea and Sclerotinia sclerotiorum secrete oxalic acid as a pathogenicity factor with a broad action. Consequently, it should be possible to interfere with the infection process by degrading oxalic acid during the interaction of these pathogens with their hosts. We have evaluated the potential of oxalate-degrading bacteria to protect plants against pathogenic fungi. Such bacteria were isolated from agricultural soil and selected on agar plates with Ca-oxalate as the sole carbon source. Four strains were retained with a medium-to-strong protective activity on Arabidopsis thaliana leaves against B. cinerea and S. sclerotiorum. They can provide 30 to 70% protection against fungal infection in different pathosystems, including B. cinerea on A. thaliana, cucumber, grapevine, and tomato. The oxalate-degrading bacteria induced only some marker genes for common plant signaling pathways for defenses, but protective effects were slightly reduced in A. thaliana mutants impaired in the ethylene and jasmonic acid signaling pathways. More detailed studies on the protective mechanism were performed in ox-strain B, identified as Cupriavidus campinensis, by analysis of transposon-tagged mutants that have a reduced ability to degrade oxalic acid.


Assuntos
Arabidopsis/microbiologia , Bactérias/metabolismo , Botrytis/fisiologia , Oxalatos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bioensaio , Botrytis/metabolismo , Cucumis sativus/metabolismo , Cucumis sativus/microbiologia , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Vitis/metabolismo , Vitis/microbiologia
16.
Front Plant Sci ; 8: 427, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424714

RESUMO

Strains of Pseudomonas that produce antimicrobial metabolites and control soilborne plant diseases have often been isolated from soils defined as disease-suppressive, i.e., soils, in which specific plant pathogens are present, but plants show no or reduced disease symptoms. Moreover, it is assumed that pseudomonads producing antimicrobial compounds such as 2,4-diacetylphloroglucinol (DAPG) or phenazines (PHZ) contribute to the specific disease resistance of suppressive soils. However, pseudomonads producing antimicrobial metabolites are also present in soils that are conducive to disease. Currently, it is still unknown whether and to which extent the abundance of antimicrobials-producing pseudomonads is related to the general disease resistance of common agricultural soils. Moreover, virtually nothing is known about the conditions under which pseudomonads express antimicrobial genes in agricultural field soils. We present here results of the first side-by-side comparison of 10 representative Swiss agricultural soils with a cereal-oriented cropping history for (i) the resistance against two soilborne pathogens, (ii) the abundance of Pseudomonas bacteria harboring genes involved in the biosynthesis of the antimicrobials DAPG, PHZ, and pyrrolnitrin on roots of wheat, and (iii) the ability to support the expression of these genes on the roots. Our study revealed that the level of soil disease resistance strongly depends on the type of pathogen, e.g., soils that are highly resistant to Gaeumannomyces tritici often are highly susceptible to Pythium ultimum and vice versa. There was no significant correlation between the disease resistance of the soils, the abundance of Pseudomonas bacteria carrying DAPG, PHZ, and pyrrolnitrin biosynthetic genes, and the ability of the soils to support the expression of the antimicrobial genes. Correlation analyses indicated that certain soil factors such as silt, clay, and some macro- and micronutrients influence both the abundance and the expression of the antimicrobial genes. Taken together, the results of this study suggests that pseudomonads producing DAPG, PHZ, or pyrrolnitrin are present and abundant in Swiss agricultural soils and that the soils support the expression of the respective biosynthetic genes in these bacteria to various degrees. The precise role that these pseudomonads play in the general disease resistance of the investigated agricultural soils remains elusive.

17.
Front Plant Sci ; 8: 1809, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163562

RESUMO

In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas, mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by the frit fly, Oscinella frit, a major pest of cereals. Hence, beneficial impacts differed between the beneficial soil organisms and were most evident for plants under biotic stress. Overall, our findings indicate that in wheat production under the test conditions the three beneficial soil organisms can establish nicely and are compatible, but their combined application provides no additional benefits. Further studies are required, also in other cropping systems, to fine-tune the functional interactions among beneficial soil organisms, crops, and the environment.

18.
Artigo em Inglês | MEDLINE | ID: mdl-27491813

RESUMO

Fusarium head blight is one of the most important cereal diseases worldwide. Cereals differ in terms of the main occurring Fusarium species and the infection is influenced by various factors, such as weather and cropping measures. Little is known about Fusarium species in barley in Switzerland, hence harvest samples from growers were collected in 2013 and 2014, along with information on respective cropping factors. The incidence of different Fusarium species was obtained by using a seed health test and mycotoxins were quantified by LC-MS/MS. With these techniques, the most dominant species, F. graminearum, and the most prominent mycotoxin, deoxynivalenol (DON), were identified. Between the three main Swiss cropping systems, Organic, Extenso and Proof of ecological performance, we observed differences with the lowest incidence and toxin accumulation in organically cultivated barley. Hence, we hypothesise that this finding was based on an array of growing techniques within a given cropping system. We observed that barley samples from fields with maize as previous crop had a substantially higher F. graminearum incidence and elevated DON accumulation compared with other previous crops. Furthermore, the use of reduced tillage led to a higher disease incidence and toxin content compared with samples from ploughed fields. Further factors increasing Fusarium infection were high nitrogen fertilisation as well as the application of fungicides and growth regulators. Results from the current study can be used to develop optimised cropping systems that reduce the risks of mycotoxin contamination.


Assuntos
Produção Agrícola/métodos , Contaminação de Alimentos/análise , Fusarium/química , Fusarium/isolamento & purificação , Hordeum/química , Micotoxinas/análise , Cromatografia Líquida , Contaminação de Alimentos/prevenção & controle , Suíça , Espectrometria de Massas em Tandem
19.
FEMS Microbiol Ecol ; 87(2): 441-50, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24224494

RESUMO

Pseudomonas inoculants may lose colony-forming ability in soil, but soil properties involved are poorly documented. Here, we tested the hypothesis that soil acidity could reduce persistence and cell culturability of Pseudomonas protegens CHA0. At 1 week in vitro, strain CHA0 was found as culturable cells at pH 7, whereas most cells at pH 4 and all cells at pH 3 were noncultured. In 21 natural soils of contrasted pH, cell culturability loss of P. protegens CHA0 took place in all six very acidic soils (pH < 5.0) and in three of five acidic soils (5.0 < pH < 6.5), whereas it was negligible in the neutral and alkaline soils at 2 weeks and 2 months. No correlation was found between total cell counts of P. protegens CHA0 and soil composition data, whereas colony counts of the strain correlated with soil pH. Maintenance of cell culturability in soils coincided with a reduction in inoculant cell size. Some of the noncultured CHA0 cells were nutrient responsive in Kogure's viability test, both in vitro and in soil. Thus, this shows for the first time that the sole intrinsic soil composition factor triggering cell culturability loss in P. protegens CHA0 is soil acidity.


Assuntos
Pseudomonas/crescimento & desenvolvimento , Microbiologia do Solo , Solo/química , Carga Bacteriana , Técnicas Bacteriológicas , Técnicas de Cultura de Células , Concentração de Íons de Hidrogênio
20.
GM Crops Food ; 3(2): 115-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22538226

RESUMO

Outcrosses from genetically modified (GM) to conventional crops by pollen-mediated gene flow (PMGF) are a concern when growing GM crops close to non-GM fields. This also applies to the experimental releases of GM plants in field trials. Therefore, biosafety measures such as isolation distances and surveying of PMGF are required by the regulatory authorities in Switzerland. For two and three years, respectively, we monitored crop-to-crop PMGF from GM wheat field trials in two locations in Switzerland. The pollen donors were two GM spring wheat lines with enhanced fungal resistance and a herbicide tolerance as a selection marker. Seeds from the experimental plots were sampled to test the detection method for outcrosses. Two outcrosses were found adjacent to a transgenic plot within the experimental area. For the survey of PMGF, pollen receptor plots of the conventional wheat variety Frisal used for transformation were planted in the border crop and around the experimental field up to a distance of 200 m. Although the environmental conditions were favorable and the donor and receptor plots flowered at the same time, only three outcrosses were found in approximately 185,000 tested seedlings from seeds collected outside the experimental area. All three hybrids were found in the border crop surrounding the experimental area, but none outside the field. We conclude that a pollen barrier (border crop) and an additional isolation distance of 5 m is a sufficient measure to reduce PMGF from a GM wheat field trial to cleistogamous varieties in commercial fields below a level that can be detected.


Assuntos
Fluxo Gênico , Plantas Geneticamente Modificadas/genética , Pólen/genética , Triticum/genética , Aminobutiratos/toxicidade , Cruzamentos Genéticos , Resistência à Doença/genética , Fungos/fisiologia , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/microbiologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/microbiologia , Sementes/genética , Suíça , Triticum/efeitos dos fármacos , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA