Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 161(1): 36-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124322

RESUMO

Insertional mutagenesis is a powerful tool for determining gene function in both model and crop plant species. Tnt1, the transposable element of tobacco (Nicotiana tabacum) cell type 1, is a retrotransposon that replicates via an RNA copy that is reverse transcribed and integrated elsewhere in the plant genome. Based on studies in a variety of plants, Tnt1 appears to be inactive in normal plant tissue but can be reactivated by tissue culture. Our goal was to evaluate the utility of the Tnt1 retrotransposon as a mutagenesis strategy in soybean (Glycine max). Experiments showed that the Tnt1 element was stably transformed into soybean plants by Agrobacterium tumefaciens-mediated transformation. Twenty-seven independent transgenic lines carrying Tnt1 insertions were generated. Southern-blot analysis revealed that the copy number of transposed Tnt1 elements ranged from four to 19 insertions, with an average of approximately eight copies per line. These insertions showed Mendelian segregation and did not transpose under normal growth conditions. Analysis of 99 Tnt1 flanking sequences revealed insertions into 62 (62%) annotated genes, indicating that the element preferentially inserts into protein-coding regions. Tnt1 insertions were found in all 20 soybean chromosomes, indicating that Tnt1 transposed throughout the soybean genome. Furthermore, fluorescence in situ hybridization experiments validated that Tnt1 inserted into multiple chromosomes. Passage of transgenic lines through two different tissue culture treatments resulted in Tnt1 transposition, significantly increasing the number of insertions per line. Thus, our data demonstrate the Tnt1 retrotransposon to be a powerful system that can be used for effective large-scale insertional mutagenesis in soybean.


Assuntos
Cromossomos de Plantas , Genômica/métodos , Glycine max/genética , Mutagênese Insercional/métodos , Retroelementos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Southern Blotting , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Dosagem de Genes , Hibridização in Situ Fluorescente , Técnicas de Embriogênese Somática de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Glycine max/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transformação Genética
2.
Physiol Plant ; 117(3): 425-434, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12654044

RESUMO

Germins and germin-like proteins (GLPs) constitute a large and highly diverse family of ubiquitous plant cell wall proteins. These proteins seem to be involved in many developmental stages and stress-related processes, but their exact participation in these processes generally remains obscure. In Pinus caribaea Morelet, the PcGER1 gene is expressed uniquely in embryo tissues, and encodes a GLP ionically bound to the walls of pine embryo cells maintained in 2,4-D-containing medium. We have cloned a genomic fragment including the 1520 bp 5'-upstream promoter region of PcGER1. This sequence contains, in its 1200 bp distal part, several cis elements (e.g. SEF4, 60 kDa protein, ABA RE and Dof recognition sites) present in genes responding to hormones and/or expressed in embryo or seed tissues, or during germination. The PcGER1 promoter sequence was cloned upstream of the GUS (beta-glucuronidase) reporter gene and transferred to tobacco Bright Yellow 2 (BY-2) cells via Agrobacterium tumefaciens-mediated transformation. Promoter activity and growth performances of transgenic asynchronous cell suspensions were analysed in the presence or absence of 2,4-D and/or BA. Optimal growth, maximum cell-wall yield and PcGER1 promoter activity were observed in the presence of 2,4-D and BA at day 4, the end of the exponential growth phase where 70-75% cells have a 2C DNA content. Analysis of promoter activity during the cell cycle in an aphidicoline-synchronized culture suggested that the expression is maximum in G1 cells. We also showed that under optimal growth conditions, 5' promoter deletions decreased the activity of the reporter gene. We discuss the function of this gene with regards to cell growth. Accession number: The PcGER1 promoter sequence was submitted to the genbank database under the accession number AY077704.

3.
Planta ; 229(2): 279-89, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18855007

RESUMO

Soybean is a major crop species providing valuable feedstock for food, feed and biofuel. In recent years, considerable progress has been made in developing genomic resources for soybean, including on-going efforts to sequence the genome. These efforts have identified a large number of soybean genes, most with unknown function. Therefore, a major research priority is determining the function of these genes, especially those involved in agronomic performance and seed traits. One means to study gene function is through mutagenesis and the study of the resulting phenotypes. Transposon-tagging has been used successfully in both model and crop plants to support studies of gene function. In this report, we describe efforts to generate a transposon-based mutant collection of soybean. The Ds transposon system was used to create activation-tagging, gene and enhancer trap elements. Currently, the repository houses approximately 900 soybean events, with flanking sequence data derived from 200 of these events. Analysis of the insertions revealed approximately 70% disrupted known genes, with the majority matching sequences derived from either Glycine max or Medicago truncatula sequences. Among the mutants generated, one resulted in male-sterility and was shown to disrupt the strictosidine synthase gene. This example clearly demonstrates that it is possible to disrupt soybean gene function by insertional mutagenesis and to derive useful mutants by this approach in spite of the tetraploid nature of the soybean genome.


Assuntos
Elementos de DNA Transponíveis/genética , Bases de Dados Genéticas , Glycine max/genética , Mutagênese , Carbono-Nitrogênio Liases/genética , Carbono-Nitrogênio Liases/metabolismo , DNA Bacteriano/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , Genoma de Planta/genética , Mutagênese Insercional , Fenótipo , Infertilidade das Plantas/genética , Pólen/citologia , Glycine max/citologia , Glycine max/enzimologia , Transformação Genética , Transposases/metabolismo
4.
Plant Mol Biol ; 67(5): 469-82, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18392777

RESUMO

Lectin receptor-like kinases (Lectin RLKs) are a large family of receptor-like kinases with an extracellular legume lectin-like domain. There are approximately 45 such receptor kinases in Arabidopsis thaliana. Surprisingly, although receptor-like kinases in general are well investigated in Arabidopsis, relatively little is known about the functions of members of the Lectin RLK family. A number of studies implicated members of this family in various functions, such as disease resistance, stress responses, hormone signaling, and legume-rhizobium symbiosis. Our current work demonstrated that mutation in one Lectin RLK gene led to male sterility in Arabidopsis. The sterility was due to defects in pollen development. Pollen development proceeded normally in the mutant until anther stage 8. After that, all pollen grains deformed and collapsed. Mature pollen grains were much smaller than wild-type pollen grains, glued together, and totally collapsed. Therefore, the mutant was named sgc, standing for small, glued-together, and collapsed pollen mutant. The mutant phenotype appeared to be caused by an unidentified sporophytic defect due to the mutation. As revealed by analysis of the promoter-GUS transgenic plants and the gene expression analysis using RT-PCR, the gene showed an interesting temporal and spatial expression pattern: it had no or a low expression in young flowers (roughly before anther stage 6), reached a maximum level around stages 6-7, and then declined gradually to a very low level in young siliques. No expression was detected in microspores or pollen. Together, our data demonstrated that SGC Lectin RLK plays a critical role in pollen development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Primers do DNA , Teste de Complementação Genética , Microscopia Eletrônica de Varredura , Pólen/enzimologia , Pólen/genética , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Plant Physiol ; 146(2): 589-601, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18083798

RESUMO

The Arabidopsis thaliana AtOPT3 belongs to the oligopeptide transporter (OPT) family, a relatively poorly characterized family of peptide/modified peptide transporters found in archebacteria, bacteria, fungi, and plants. A null mutation in AtOPT3 resulted in embryo lethality, indicating an essential role for AtOPT3 in embryo development. In this article, we report on the isolation and phenotypic characterization of a second AtOPT3 mutant line, opt3-2, harboring a T-DNA insertion in the 5' untranslated region of AtOPT3. The T-DNA insertion in the AtOPT3 promoter resulted in reduced but sufficient AtOPT3 expression to allow embryo formation in opt3-2 homozygous seeds. Phenotypic analyses of opt3-2 plants revealed three interesting loss-of-function phenotypes associated with iron metabolism. First, reduced AtOPT3 expression in opt3-2 plants resulted in the constitutive expression of root iron deficiency responses regardless of exogenous iron supply. Second, deregulation of root iron uptake processes in opt3-2 roots resulted in the accumulation of very high levels of iron in opt3-2 tissues. Hyperaccumulation of iron in opt3-2 resulted in the formation of brown necrotic areas in opt3-2 leaves and was more pronounced during the seed-filling stage. Third, reduced AtOPT3 expression resulted in decreased accumulation of iron in opt3-2 seeds. The reduced accumulation of iron in opt3-2 seeds is especially noteworthy considering the excessively high levels of accumulated iron in other opt3-2 tissues. AtOPT3, therefore, plays a critical role in two important aspects of iron metabolism, namely, maintenance of whole-plant iron homeostasis and iron nutrition of developing seeds.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Homeostase/fisiologia , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Metais/metabolismo , Sementes/crescimento & desenvolvimento , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/genética , Mutação , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA