Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Preprint em Inglês | PREPRINT-BIORXIV | ID: ppbiorxiv-221135

RESUMO

The severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infects cells through interaction of its spike protein (SARS2-S) with Angiotensin-converting enzyme 2 (ACE2) and activation by proteases, in particular transmembrane protease serine 2 (TMPRSS2). Viruses can also spread through fusion of infected with uninfected cells. We compared the requirements of ACE2 expression, proteolytic activation, and the sensitivity to inhibitors for SARS2-S-mediated and SARS-CoV-S(SARS1-S)-mediated cell-cell fusion. SARS2-S-driven fusion was moderately increased by TMPRSS2 and strongly by ACE2, while SARS1-S-driven fusion was strongly increased by TMPRSS2 and less so by ACE2 expression. In contrast to SARS1-S, SARS2-S-mediated cell-cell fusion was efficiently activated by Batimastat-sensitive metalloproteases. Mutation of the S1/S2 proteolytic cleavage site reduced effector-target-cell fusion when ACE2 or TMPRSS2 were limiting and rendered SARS2-S-driven cell-cell fusion more dependent on TMPRSS2. When both ACE2 and TMPRSS2 were abundant, initial target-effector-cell fusion was unaltered compared to wt SARS2-S, but syncytia remained smaller. Mutation of the S2 site specifically abrogated activation by TMPRSS2 for both cell-cell fusion and SARS2-S-driven pseudoparticle entry but still allowed for activation by metalloproteases for cell-cell fusion and by cathepsins for particle entry. Finally, we found that the TMPRSS2 inhibitor Bromhexine was unable to reduce TMPRSS2-activated cell-cell fusion by SARS1-S and SARS2-S as opposed to the inhibitor Camostat. Paradoxically, Bromhexine enhanced cell-cell fusion in the presence of TMPRSS2, while its metabolite Ambroxol exhibited inhibitory activity in some conditions. On Calu-3 lung cells, Ambroxol weakly inhibited SARS2-S-driven lentiviral pseudoparticle entry, and both substances exhibited a dose-dependent trend towards weak inhibition of authentic SARS-CoV-2. IMPORTANCECell-cell fusion allows the virus to infect neighboring cells without the need to produce free virus and contributes to tissue damage by creating virus-infected syncytia. Our results demonstrate that the S2 cleavage site is essential for activation by TMPRSS2 and unravel important differences between SARS-CoV and SARS-CoV-2, among those greater dependence of SARS-CoV-2 on ACE2 expression and activation by metalloproteases for cell-cell fusion. Bromhexine, reportedly an inhibitor of TMPRSS2, is currently tested in clinical trials against coronavirus disease 2019. Our results indicate that Bromhexine enhances fusion in some conditions. We therefore caution against use of Bromhexine in higher dosage until its effects on SARS-CoV-2 spike activation are better understood. The related compound Ambroxol, which similarly to Bromhexine is clinically used as an expectorant, did not exhibit activating effects on cell-cell fusion. Both compounds exhibited weak inhibitory activity against SARS-CoV-2 infection at high concentrations, which might be clinically attainable for Ambroxol.

2.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-20091447

RESUMO

SARS-CoV-2 has emerged as a previously unknown zoonotic coronavirus that spread worldwide causing a serious pandemic. While reliable nucleic acid-based diagnostic assays were rapidly available, there exists only a limited number of validated serological assays. Here, we evaluated a novel flow cytometric approach based on antigen-expressing HEK 293T cells to assess spike-specific IgG and IgM antibody responses. Analyses of 201 pre-COVID-19 sera proved a high assay specificity in comparison to commercially available CLIA and ELISA systems, while also revealing the highest sensitivity in specimens from PCR-confirmed SARS-CoV-2 infected patients. Additionally, a soluble Angiotensin-Converting-Enzyme 2 (ACE-2) variant was established as external standard to quantify spike-specific antibody responses on different assay platforms. In conclusion, our newly established flow cytometric assay allows sensitive and quantitative detection of SARS-CoV-2-specific antibodies, which can be easily adopted in different laboratories and does not rely on external supply of assay kits.

3.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-21258887

RESUMO

Administration of a first dose of the COVID-19 vaccine ChAdOx1 nCoV-19 (Vaxzevria(R), AstraZeneca) is associated with a certain risk for vaccine-induced immune thrombotic thrombocytopenia. Therefore, several countries have recommended replacing the second dose of ChAdOx1 nCoV-19 with an mRNA-based vaccine as a precautionary measure, although data on safety and efficacy of such heterologous prime-boost regimen are sparse. Therefore, vaccinees, who had received a heterologous vaccination using ChAdOx1 nCoV-19 as prime and BNT162b2 (Comirnaty(R), BioNTech-Pfizer) mRNA as boost vaccination were offered SARS-CoV-2 antibody testing to quantify their vaccine-induced neutralizing antibody response5. The results were compared to cohorts of healthcare workers or volunteers, who received homologous BNT162b2 or homologous ChAdOx1 nCoV-19 vaccination regimens, respectively. A striking increase of vaccine-induced SARS-CoV-2 neutralizing antibody activity was observed in 229 vaccinees that received a BNT162b2 boost 9 to 12 weeks after ChAdOx1 nCoV-19 prime. In our cohort comprising over 480 individuals, the heterologous vaccination scheme induced significantly higher neutralizing antibody titers than homologous ChAdOx1 nCoV-19 and even than homologous BNT162b2 vaccination. This proves that a single dose of a COVID-19 mRNA vaccine after ChAdOx1 nCoV-19 prime vaccination is sufficient to achieve high neutralizing antibody levels predicting immune protection from SARS-CoV-2 infection, and may even increase vaccine efficacy offering an alternative in a setting of vaccine shortage.

4.
Preprint em Inglês | PREPRINT-BIORXIV | ID: ppbiorxiv-184093

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a worldwide health threat. Here, we report that low plasma interleukin-3 (IL-3) levels were associated with increased severity and mortality during SARS-CoV-2 infections. IL-3 promoted the recruitment of antiviral circulating plasmacytoid dendritic cells (pDCs) into the airways by stimulating CXCL12 secretion from pulmonary CD123+ epithelial cells. This study identifies IL-3 as a predictive disease marker and potential therapeutic target for SARS-CoV-2 infections.Competing Interest StatementThe authors have declared no competing interest.View Full Text

5.
Preprint em Inglês | PREPRINT-BIORXIV | ID: ppbiorxiv-454858

RESUMO

Several effective SARS-CoV-2 vaccines are currently in use, but in the light of waning immunity and the emergence of novel variants, effective boost modalities are needed in order to maintain or even increase immunity. Here we report that intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic DNA or mRNA priming result in strong systemic and mucosal immunity in mice. In contrast to two intramuscular injections with an mRNA vaccine, the mucosal boost with adenoviral vectors induced high levels of IgA and tissue-resident memory T cells in the respiratory tract. Mucosal neutralization of virus variants of concern was also enhanced by the intranasal boosts. Importantly, priming with mRNA provoked a more comprehensive T cell response consisting of circulating and tissue-resident memory T cells after the boost, while a DNA priming induced mostly mucosal T cells. Concomitantly, the intranasal boost strategies provided protection against symptomatic disease. Therefore, a mucosal booster immunization after mRNA priming is a promising approach to establish mucosal immunity in addition to systemic responses.

6.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-21254343

RESUMO

SARS-CoV-2 infection fatality ratios (IFR) remain controversially discussed with implications for political measures, but the number of registered infections depends on testing strategies and deduced case fatality ratios (CFR) are poor proxies for IFR. The German county of Tirschenreuth suffered a severe SARS-CoV-2 outbreak in spring 2020 with particularly high CFR. To estimate seroprevalence, dark figure, and IFR for the Tirschenreuth population aged [≥]14 years in June/July 2020 with misclassification error control, we conducted a population-based study, including home visits for elderly, and analyzed 4203 participants for SARS-CoV-2 antibodies via three antibody tests (64% of our random sample). Latent class analysis yielded 8.6% standardized county-wide seroprevalence, dark figure factor 5.0, and 2.5% overall IFR. Seroprevalence was two-fold higher among medical workers and one third among current smokers with similar proportions of registered infections. While seroprevalence did not show an age-trend, the dark figure was 12.2 in the young versus 1.7 for [≥]85-year-old. Age-specific IFRs were <0.5% below 60 years of age, 1.0% for age 60-69, 13.2% for age 70+, confirming a previously reported age-model for IFR. Senior care homes accounted for 45% of COVID-19-related deaths, reflected by an IFR of 7.5% among individuals aged 70+ and an overall IFR of 1.4% when excluding senior care home residents from our computation. Our data underscore senior care home infections as key determinant of IFR additionally to age, insufficient targeted testing in the young, and the need for further investigations on behavioral or molecular causes of the fewer infections among current smokers.

7.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-22277189

RESUMO

Repeated mRNA vaccinations are an efficient tool to combat the SARS-CoV-2 pandemic. High levels of neutralizing SARS-CoV-2-antibodies are an important component of vaccine-induced immunity. Shortly after the first or second mRNA vaccine dose, the IgG response mainly consists of the pro-inflammatory isotypes IgG1 and IgG3 and is driven by T helper (Th) 1 cells. Here, we report that several months after the second vaccination, SARS-CoV-2-specific antibodies were increasingly composed of non-inflammatory IgG2 and particularly IgG4, which were further boosted by a third mRNA vaccination and/or SARS-CoV-2 variant breakthrough infections. While IgG antibodies were affinity matured and of high neutralization capacity, the switch in constant domains caused changes in fragment crystallizable (Fc)-receptor mediated effector functions, including a decreased capacity to facilitate phagocytosis. IgG4 induction was neither induced by Th2 cells nor observed after homologous or heterologous SARS-CoV-2 vaccination with adenoviral vectors. In addition, IgG2- and IgG4-producing memory B cells were phenotypically indistinguishable from IgG1- or IgG3-producing cells. Since Fc-mediated effector functions are critical for antiviral immunity, the described class switch towards non-inflammatory IgG isotypes, which otherwise rarely occurs after vaccination or viral infection, may have consequences for the choice and timing of vaccination regimens using mRNA vaccines.

8.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-22272771

RESUMO

Vaccines are the most important means to overcome the SARS-CoV-2 pandemic. They induce specific antibody and T-cell responses but it remains open how well vaccine-induced immunity is preserved over time following homologous and heterologous immunization regimens. Here, we compared the dynamics of humoral and cellular immune responses up to 5 months after homologous or heterologous vaccination with either ChAdOx1-nCoV-19 (ChAd) or BNT162b2 (BNT) or both. Antibody responses significantly waned after vaccination, irrespective of the regimen. The capacity to neutralize SARS-CoV-2 - including variants of concern such as Delta or Omicron - was superior after heterologous compared to homologous BNT vaccination, both of which resulted in longer-lasting humoral immunity than homologous ChAd immunization. T-cell responses showed less waning irrespective of the vaccination regimen. These findings demonstrate that heterologous vaccination with ChAd and BNT is a potent approach to induce long-term humoral and cellular immune protection. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSDue to some rare severe side effects after the administration of the adenoviral vaccine, ChAdOx1 nCoV-19, many countries recommended a heterologous vaccination scheme including mRNA vaccines like BNT162b2 for the second dose. We performed a PubMed search (with no restrictions on time span) using the search terms "SARS-CoV-2" and "heterologous vaccination" and obtained 247 results. Only a fraction of manuscripts included direct comparisons of patient cohorts that received either a heterologous or a homologous vaccination regimen. Of those, the vast majority investigated only short-term immunogenicity after vaccination. Thus, little is known about the long-term maintenance of immunity by heterologous compared to homologous vaccination. Added value of this studyWe add a very comprehensive and comparative study investigating heterologous and homologous vaccination regimens early and late after vaccination. Key features include the number of patients (n = 473), the number of vaccination cohorts (n= 3), the fact that samples were derived from three independent study centers and comparative analyses were performed at two independent study centers, as well as in-depth investigation of humoral and T cellular immunity. Implications of all the available evidenceThe recent data creates a line of evidence that heterologous vaccination, compared to homologous vaccination regimens, results in at least non-inferior maintenance of humoral and cellular immunity. The enhanced understanding of immunity induced by individual vaccination regimens is crucial for further recommendations regarding the necessity, timing and choice of additional vaccinations and public health policies.

9.
Preprint em Inglês | PREPRINT-BIORXIV | ID: ppbiorxiv-440101

RESUMO

TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly generate human monoclonal antibodies. After immunizing these mice against the spike protein of SARS-CoV-2, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralized SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of neutralizing antibodies binds to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2 induced weight loss. Thus, we report two clusters of potent non-competing SARS-CoV-2 neutralizing antibodies providing potential candidates for therapy and prophylaxis of COVID-19. The study further supports the use of transgenic animals with human immunoglobulin gene repertoires in pandemic preparedness initiatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA