Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Evol ; 96(4-6): 283-304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34662880

RESUMO

To identify the putative amygdalar complex in cartilaginous fishes, our first step was to obtain evidence that supports the existence of a pallial amygdala in the catshark Scyliorhinus canicula, at present the prevailing chondrichthyan model in comparative neurobiology and developmental biology. To this end, we analyzed the organization of the lateral walls of the telencephalic hemispheres of adults, juveniles, and early prehatching embryos by immunohistochemistry against tyrosine hydroxylase (TH), somatostatin (SOM), Pax6, serotonin (5HT), substance P (SP), and Met-enkephalin (MetEnk), calbindin-28k (CB), and calretinin (CR), and by in situ hybridization against regulatory genes such as Tbr1, Lhx9, Emx1, and Dlx2. Our data were integrated with those available from the literature related to the secondary olfactory projections in this shark species. We have characterized two possible amygdalar territories. One, which may represent a ventropallial component, was identified by its chemical signature (moderate density of Pax6-ir cells, scarce TH-ir and SOM-ir cells, and absence of CR-ir and CB-ir cells) and gene expressions (Tbr1 and Lhx9 expressions in an Emx1 negative domain, as the ventral pallium of amniotes). It is perhaps comparable to the lateral amygdala of amphibians and the pallial amygdala of teleosts. The second was a territory related to the pallial-subpallial boundary with abundant Pax6-ir and CR-ir cells, and 5HT-ir, SP-ir, and MetEnk-ir fibers capping dorsally the area superficialis basalis. This olfactory-related region at the neighborhood of the pallial-subpallial boundary may represent a subpallial amygdala subdivision that possibly contains migrated cells of ventropallial origin.


Assuntos
Tonsila do Cerebelo , Telencéfalo , Animais , Calbindinas/metabolismo , Córtex Cerebral/metabolismo , Hibridização In Situ , Serotonina , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Evol Dev ; 23(5): 404-422, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34411410

RESUMO

Ladybird homeobox (Lbx) transcription factors have crucial functions in muscle and nervous system development in many animals. Amniotes have two Lbx genes, but only Lbx1 is expressed in spinal cord. In contrast, teleosts have three lbx genes and we show here that zebrafish lbx1a, lbx1b, and lbx2 are expressed by distinct spinal cell types, and that lbx1a is expressed in dI4, dI5, and dI6 interneurons, as in amniotes. Our data examining lbx expression in Scyliorhinus canicula and Xenopus tropicalis suggest that the spinal interneuron expression of zebrafish lbx1a is ancestral, whereas lbx1b has acquired a new expression pattern in spinal cord progenitor cells. lbx2 spinal expression was probably acquired in the ray-finned lineage, as this gene is not expressed in the spinal cords of either amniotes or S. canicula. We also show that the spinal function of zebrafish lbx1a is conserved with mouse Lbx1. In zebrafish lbx1a mutants, there is a reduction in the number of inhibitory spinal interneurons and an increase in the number of excitatory spinal interneurons, similar to mouse Lbx1 mutants. Interestingly, the number of inhibitory spinal interneurons is also reduced in lbx1b mutants, although in this case the number of excitatory interneurons is not increased. lbx1a;lbx1b double mutants have a similar spinal interneuron phenotype to lbx1a single mutants. Taken together these data suggest that lbx1b and lbx1a may be required in succession for correct specification of dI4 and dI6 spinal interneurons, although only lbx1a is required for suppression of excitatory fates in these cells.


Assuntos
Medula Espinal , Peixe-Zebra , Animais , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Interneurônios , Camundongos , Fatores de Transcrição/genética , Peixe-Zebra/genética
3.
Mol Biol Evol ; 36(10): 2265-2276, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31270539

RESUMO

In order to characterize the molecular bases of mineralizing cell evolution, we targeted type X collagen, a nonfibrillar network forming collagen encoded by the Col10a1 gene. It is involved in the process of endochondral ossification in ray-finned fishes and tetrapods (Osteichthyes), but until now unknown in cartilaginous fishes (Chondrichthyes). We show that holocephalans and elasmobranchs have respectively five and six tandemly duplicated Col10a1 gene copies that display conserved genomic synteny with osteichthyan Col10a1 genes. All Col10a1 genes in the catshark Scyliorhinus canicula are expressed in ameloblasts and/or odontoblasts of teeth and scales, during the stages of extracellular matrix protein secretion and mineralization. Only one duplicate is expressed in the endoskeletal (vertebral) mineralizing tissues. We also show that the expression of type X collagen is present in teeth of two osteichthyans, the zebrafish Danio rerio and the western clawed frog Xenopus tropicalis, indicating an ancestral jawed vertebrate involvement of type X collagen in odontode formation. Our findings push the origin of Col10a1 gene prior to the divergence of osteichthyans and chondrichthyans, and demonstrate its ancestral association with mineralization of both the odontode skeleton and the endoskeleton.


Assuntos
Calcificação Fisiológica/genética , Colágeno Tipo X/genética , Elasmobrânquios/genética , Animais , Colágeno Tipo X/metabolismo , Elasmobrânquios/metabolismo , Duplicação Gênica , Filogenia , Sintenia
4.
Development ; 143(10): 1732-41, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26989170

RESUMO

Posterior body elongation is a widespread mechanism propelling the generation of the metazoan body plan. The posterior growth model predicts that a posterior growth zone generates sufficient tissue volume to elongate the posterior body. However, there are energy supply-related differences between vertebrates in the degree to which growth occurs concomitantly with embryogenesis. By applying a multi-scalar morphometric analysis in zebrafish embryos, we show that posterior body elongation is generated by an influx of cells from lateral regions, by convergence-extension of cells as they exit the tailbud, and finally by a late volumetric growth in the spinal cord and notochord. Importantly, the unsegmented region does not generate additional tissue volume. Fibroblast growth factor inhibition blocks tissue convergence rather than volumetric growth, showing that a conserved molecular mechanism can control convergent morphogenesis through different cell behaviours. Finally, via a comparative morphometric analysis in lamprey, dogfish, zebrafish and mouse, we propose that elongation via posterior volumetric growth is linked to increased energy supply and is associated with an overall increase in volumetric growth and elongation.


Assuntos
Padronização Corporal , Organogênese , Vertebrados/embriologia , Animais , Movimento Celular , Proliferação de Células , Cação (Peixe)/embriologia , Fatores de Crescimento de Fibroblastos/metabolismo , Lampreias/embriologia , Camundongos , Notocorda/embriologia , Transdução de Sinais , Especificidade da Espécie , Medula Espinal/embriologia , Cauda , Peixe-Zebra/embriologia
5.
Gen Comp Endocrinol ; 279: 139-147, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30836103

RESUMO

The somatostatin (SST) family members are a group of neuropeptides that are best known for their role in the regulation of growth, development and metabolism. The occurrence of six paralogous SST genes named SST1, SST2, SST3, SST4, SST5 and SST6 has been reported in vertebrates. It has been proposed that SST1, SST2 and SST5 arose in 2R from a common ancestral gene. SST3 and SST6 would have been subsequently generated by tandem duplications of the SST1 and SST2 genes respectively, at the base of the actinopterygian lineage. SST4 is thought to have appeared more recently from SST1, in teleost-specific 3R. In order to gain more insights into the SST gene family in vertebrates, we sought to identify which paralogs of this family are present in cartilaginous fish. For this purpose, we first searched the recently available genome and transcriptome databases from the catshark Scyliorhinus canicula. In a previous study, three S. canicula SST genes, called at that time SSTa, SSTb and SSTc, were identified and proposed to correspond to SST1, SST5 and SST2 respectively. In the present work, two additional SST genes, called SSTd and SSTe, were found in S. canicula plus two other chondrichtyan species, elephant shark (Callorhinchus milii) and whale shark (Rhincodon typus). Phylogeny and synteny analyses were then carried out in order to reveal the evolutionary relationships of SSTd and SSTe with other vertbrates SSTs. We showed that SSTd and SSTe correspond to SST2 and SST3 respectively, while SSTc corresponds to SST6 and not to SST2 as initially proposed. Our investigations in other vertebrate species also led us to find that the so-called SST2 gene in chicken, lungfish, sturgeons and teleosts actually corresponds to SST6. Conversely, the so-called SST6 gene in actinopterygians corresponds to SST2. Taken together, our results suggest that: i) SST3 and SST6 were already present in the gnathostome ancestor, much earlier than previously thought; ii) SST6 was also present in the tetrapod ancestor and still occurs in living birds; with this respect, it is likely that SST6 was independently lost several times during evolution: in amphibians, squamates and mammals; iii) SST2, SST3 and SST5 were probably lost in euteleosts, sarcopterygians and tetrapods, respectively.


Assuntos
Somatostatina/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , DNA Complementar/genética , Loci Gênicos , Genoma , Especificidade de Órgãos/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Somatostatina/química , Sintenia/genética , Transcriptoma/genética
6.
Dev Biol ; 413(1): 39-49, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26988117

RESUMO

In the lesser spotted catshark (Scyliorhinus canicula), as in most non-mammalian vertebrates, the dentition renews throughout life. To contribute to our understanding of how continuous tooth replacement is achieved, we searched for evidence for the presence of stem cells in this species. Three-dimensional reconstructions of juvenile (2-3 weeks post-hatch) specimens showed that tooth families merge imperceptibly with so-called interdental zones within a continuous and permanent dental lamina. Interdental regions are composed of three layers, continuous with cervical loop, middle, and outer dental epithelium of the tooth families, respectively. A BrdU pulse-chase experiment revealed that cell proliferation is initiated in the lingual part of the dental lamina and the resulting population shifts one tooth position towards the oral epithelium in around four to five weeks. In the longest chase time (114 days) label-retaining and arguably non-differentiated cells were present at the lingual border of the dental lamina. These were found in the outer and middle dental epithelium, both within and between tooth families. This area of the dental lamina did not show expression or distribution of Sox2. Our data support the hypothesis that stem cells reside at the lingual border of the continuous dental lamina, more specifically in the middle dental epithelium at the level of the tooth families, and in its extension between the tooth families. To demonstrate their true stemness and their role in continuous tooth replacement, it remains to be shown that these cells have the potential to give rise to a complete new successor.


Assuntos
Tubarões/embriologia , Tubarões/metabolismo , Células-Tronco/citologia , Dente/embriologia , Animais , Diferenciação Celular , Proliferação de Células , Células Epiteliais/citologia , Epitélio , Imuno-Histoquímica , Hibridização In Situ , Odontogênese , Fatores de Transcrição SOXB1/metabolismo , Germe de Dente/embriologia
7.
Proc Biol Sci ; 284(1855)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28539509

RESUMO

The evolutionary origin of the autopod involved a loss of the fin-fold and associated dermal skeleton with a concomitant elaboration of the distal endoskeleton to form a wrist and digits. Developmental studies, primarily from teleosts and amniotes, suggest a model for appendage evolution in which a delay in the AER-to-fin-fold conversion fuelled endoskeletal expansion by prolonging the function of AER-mediated regulatory networks. Here, we characterize aspects of paired fin development in the paddlefish Polyodon spathula (a non-teleost actinopterygian) and catshark Scyliorhinus canicula (chondrichthyan) to explore aspects of this model in a broader phylogenetic context. Our data demonstrate that in basal gnathostomes, the autopod marker HoxA13 co-localizes with the dermoskeleton component And1 to mark the position of the fin-fold, supporting recent work demonstrating a role for HoxA13 in zebrafish fin ray development. Additionally, we show that in paddlefish, the proximal fin and fin-fold mesenchyme share a common mesodermal origin, and that components of the Shh/LIM/Gremlin/Fgf transcriptional network critical to limb bud outgrowth and patterning are expressed in the fin-fold with a profile similar to that of tetrapods. Together these data draw contrast with hypotheses of AER heterochrony and suggest that limb-specific morphologies arose through evolutionary changes in the differentiation outcome of conserved early distal patterning compartments.


Assuntos
Nadadeiras de Animais/fisiologia , Peixes/anatomia & histologia , Proteínas de Homeodomínio/fisiologia , Tubarões/anatomia & histologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Mesoderma , Filogenia , Peixe-Zebra
8.
Brain Behav Evol ; 89(1): 1-14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28214875

RESUMO

The output of the cerebellar cortex is mainly released via cerebellar nuclei which vary in number and complexity among gnathostomes, extant vertebrates with a cerebellum. Cartilaginous fishes, a basal gnathostome lineage, show a conspicuous, well-organized cerebellar nucleus, unlike ray-finned fishes. To gain insight into the evolution and development of the cerebellar nucleus, we analyzed in the shark Scyliorhinus canicula (a chondrichthyan model species) the developmental expression of several genes coding for transcription factors (ScLhx5,ScLhx9,ScTbr1, and ScEn2) and the distribution of the protein calbindin, since all appear to be involved in cerebellar nuclei patterning in other gnathostomes. Three regions (subventricular, medial or central, and lateral or superficial) became recognizable in the cerebellar nucleus of this shark during development. Present genoarchitectonic and neurochemical data in embryos provide insight into the origin of the cerebellar nucleus in chondrichthyans and support a tripartite mediolateral organization of the cerebellar nucleus, as previously described in adult sharks. Furthermore, the expression pattern of ScLhx5,ScLhx9, and ScTbr1 in this shark, together with that of markers of proliferation, migration, and early differentiation of neurons, is compatible with the hypothesis that, as in mammals, different subsets of cerebellar nucleus neurons are originated from progenitors of 2 different sources: the ventricular zone of the cerebellar plate and the rhombic lip. We also present suggestive evidence that Lhx9 expression is involved in cerebellar nuclei patterning early on in gnathostome evolution, rather than representing an evolutionary innovation of the dentate nucleus in mammals, as previously hypothesized.


Assuntos
Evolução Biológica , Calbindinas/metabolismo , Núcleos Cerebelares , Cação (Peixe) , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Calbindinas/genética , Núcleos Cerebelares/embriologia , Núcleos Cerebelares/metabolismo , Cação (Peixe)/embriologia , Cação (Peixe)/genética , Cação (Peixe)/metabolismo , Proteínas de Peixes/genética
9.
Proc Natl Acad Sci U S A ; 111(1): 314-9, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24351931

RESUMO

Melatonin (N-acetyl-5-methoxytrypamine) is the vertebrate hormone of the night: circulating levels at night are markedly higher than day levels. This increase is driven by precisely regulated increases in acetylation of serotonin in the pineal gland by arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme in the synthesis of melatonin. This unique essential role of AANAT in vertebrate timekeeping is recognized by the moniker the timezyme. AANAT is also found in the retina, where melatonin is thought to play a paracrine role. Here, we focused on the evolution of AANAT in early vertebrates. AANATs from Agnathans (lamprey) and Chondrichthyes (catshark and elephant shark) were cloned, and it was found that pineal glands and retinas from these groups express a form of AANAT that is compositionally, biochemically, and kinetically similar to AANATs found in bony vertebrates (VT-AANAT). Examination of the available genomes indicates that VT-AANAT is absent from other forms of life, including the Cephalochordate amphioxus. Phylogenetic analysis and evolutionary rate estimation indicate that VT-AANAT evolved from the nonvertebrate form of AANAT after the Cephalochordate-Vertebrate split over one-half billion years ago. The emergence of VT-AANAT apparently involved a dramatic acceleration of evolution that accompanied neofunctionalization after a duplication of the nonvertebrate AANAT gene. This scenario is consistent with the hypotheses that the advent of VT-AANAT contributed to the evolution of the pineal gland and lateral eyes from a common ancestral photodetector and that it was not a posthoc recruitment.


Assuntos
Arilalquilamina N-Acetiltransferase/genética , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Melatonina/química , Sequência de Aminoácidos , Animais , Biblioteca Gênica , Humanos , Lampreias , Funções Verossimilhança , Dados de Sequência Molecular , Células Fotorreceptoras de Vertebrados/fisiologia , Filogenia , Glândula Pineal/fisiologia , Conformação Proteica , Retina/fisiologia , Homologia de Sequência de Aminoácidos , Tubarões , Ovinos , Fatores de Tempo , Vertebrados
10.
Gen Comp Endocrinol ; 237: 89-97, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27524287

RESUMO

Somatostatins (SSs) are a structurally diverse family of neuropeptides that play important roles in the regulation of growth, development and metabolism in vertebrates. It has been recently proposed that the common ancestor of gnathostomes possessed three SS genes, namely SS1, SS2 and SS5. SS1 and SS2 are still present in most extant gnathostome species investigated so far while SS5 primarily occurs in chondrichthyes, actinopterygians and actinistia but not in tetrapods. Very little is known about the repertoire of SSs in cyclostomes, which are extant jawless vertebrates. In the present study, we report the cloning of the cDNAs encoding three distinct lamprey SS variants that we call SSa, SSb and SSc. SSa and SSb correspond to the two SS variants previously characterized in lamprey, while SSc appears to be a totally novel one. SSa exhibits the same sequence as gnathostome SS1. SSb differs from SSa by only one substitution (Thr12→Ser). SSc exhibits a totally unique structure (ANCRMFYWKTMAAC) that shares only 50% identity with SSa and SSb. SSa, SSb and SSc precursors do not exhibit any appreciable sequence similarity outside the C-terminal region containing the SS sequence. Phylogenetic analyses failed to clearly assign orthology relationships between lamprey and gnathostome SS genes. Synteny analysis suggests that the SSc gene arose before the split of the three gnathostome genes SS1, SS2 and SS5.


Assuntos
Lampreias/genética , Somatostatina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Evolução Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Somatostatina/química , Sintenia/genética
11.
Proc Natl Acad Sci U S A ; 110(29): 11899-904, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818600

RESUMO

Classical hypotheses regarding the evolutionary origin of paired appendages propose transformation of precursor structures (gill arches and lateral fin folds) into paired fins. During development, gnathostome paired appendages form as outgrowths of body wall somatopleure, a tissue composed of somatic lateral plate mesoderm (LPM) and overlying ectoderm. In amniotes, LPM contributes connective tissue to abaxial musculature and forms ventrolateral dermis of the interlimb body wall. The phylogenetic distribution of this character is uncertain because lineage analyses of LPM have not been generated in anamniotes. We focus on the evolutionary history of the somatopleure to gain insight into the tissue context in which paired fins first appeared. Lampreys diverged from other vertebrates before the acquisition of paired fins and provide a model for investigating the preappendicular condition. We present vital dye fate maps that suggest the somatopleure is eliminated in lamprey as the LPM is separated from the ectoderm and sequestered to the coelomic linings during myotome extension. We also examine the distribution of postcranial mesoderm in catshark and axolotl. In contrast to lamprey, our findings support an LPM contribution to the trunk body wall of these taxa, which is similar to published data for amniotes. Collectively, these data lead us to hypothesize that a persistent somatopleure in the lateral body wall is a gnathostome synapomorphy, and the redistribution of LPM was a key step in generating the novel developmental module that ultimately produced paired fins. These embryological criteria can refocus arguments on paired fin origins and generate hypotheses testable by comparative studies on the source, sequence, and extent of genetic redeployment.


Assuntos
Nadadeiras de Animais/embriologia , Evolução Biológica , Derme/embriologia , Lampreias/embriologia , Mesoderma/embriologia , Ambystoma mexicanum/embriologia , Animais , Linhagem da Célula/fisiologia , Crioultramicrotomia , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Filogenia , Tubarões/embriologia
12.
Dev Biol ; 377(2): 428-48, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23473983

RESUMO

The acquisition of jaws constitutes a landmark event in vertebrate evolution, one that in large part potentiated their success and diversification. Jaw development and patterning involves an intricate spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic epithelia and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme. The coordinated regulation of these interactions is critical for both the ontogenetic registration of the jaws and the evolutionary elaboration of variable jaw morphologies and designs. Current models of jaw development and evolution have been built on molecular and cellular evidence gathered mostly in amniotes such as mice, chicks and humans, and augmented by a much smaller body of work on the zebrafish. These have been partnered by essential work attempting to understand the origins of jaws that has focused on the jawless lamprey. Chondrichthyans (cartilaginous fish) are the most distant group to amniotes within extant gnathostomes, and comprise the crucial clade uniting amniotes and agnathans; yet despite their critical phylogenetic position, evidence of the molecular and cellular underpinnings of jaw development in chondrichthyans is still lacking. Recent advances in genome and molecular developmental biology of the lesser spotted dogfish shark, Scyliorhinus canicula, make it ideal for the molecular study of chondrichthyan jaw development. Here, following the 'Hinge and Caps' model of jaw development, we have investigated evidence of heterotopic (relative changes in position) and heterochronic (relative changes in timing) shifts in gene expression, relative to amniotes, in the jaw primordia of S. canicula embryos. We demonstrate the presence of clear proximo-distal polarity in gene expression patterns in the shark embryo, thus establishing a baseline molecular baüplan for branchial arch-derived jaw development and further validating the utility of the 'Hinge and Caps' model in comparative studies of jaw development and evolution. Moreover, we correlate gene expression patterns with the absence of a lambdoidal junction (formed where the maxillary first arch meets the frontonasal processes) in chondrichthyans, further highlighting the importance of this region for the development and evolution of jaw structure in advanced gnathostomes.


Assuntos
Evolução Biológica , Região Branquial/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Arcada Osseodentária/embriologia , Modelos Biológicos , Tubarões/embriologia , Fatores Etários , Animais , Primers do DNA/genética , Embrião não Mamífero/embriologia , Embrião não Mamífero/ultraestrutura , Hibridização In Situ , Arcada Osseodentária/anatomia & histologia , Microscopia Eletrônica de Varredura , Filogenia , Tubarões/anatomia & histologia , Especificidade da Espécie
13.
Proc Biol Sci ; 281(1775): 20132669, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24307675

RESUMO

The stomach, a hallmark of gnathostome evolution, represents a unique anatomical innovation characterized by the presence of acid- and pepsin-secreting glands. However, the occurrence of these glands in gnathostome species is not universal; in the nineteenth century the French zoologist Cuvier first noted that some teleosts lacked a stomach. Strikingly, Holocephali (chimaeras), dipnoids (lungfish) and monotremes (egg-laying mammals) also lack acid secretion and a gastric cellular phenotype. Here, we test the hypothesis that loss of the gastric phenotype is correlated with the loss of key gastric genes. We investigated species from all the main gnathostome lineages and show the specific contribution of gene loss to the widespread distribution of the agastric condition. We establish that the stomach loss correlates with the persistent and complete absence of the gastric function gene kit--H(+)/K(+)-ATPase (Atp4A and Atp4B) and pepsinogens (Pga, Pgc, Cym)--in the analysed species. We also find that in gastric species the pepsinogen gene complement varies significantly (e.g. two to four in teleosts and tens in some mammals) with multiple events of pseudogenization identified in various lineages. We propose that relaxation of purifying selection in pepsinogen genes and possibly proton pump genes in response to dietary changes led to the numerous independent events of stomach loss in gnathostome history. Significantly, the absence of the gastric genes predicts that reinvention of the stomach in agastric lineages would be highly improbable, in line with Dollo's principle.


Assuntos
Evolução Biológica , ATPase Trocadora de Hidrogênio-Potássio/genética , Estômago/fisiologia , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Galinhas/anatomia & histologia , Galinhas/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Deleção de Genes , Duplicação Gênica , Genoma , ATPase Trocadora de Hidrogênio-Potássio/química , Filogenia , Tubarões/anatomia & histologia , Tubarões/genética , Estômago/anatomia & histologia
14.
Reproduction ; 147(1): 125-39, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24123129

RESUMO

In dogfish, spermatogenesis progresses from a restricted germinative zone, which lines the dorsal testicular vessel. Single spermatogonia (A(s)), including the spermatogonial stem cells (SSCs), produce successively paired (A(p)), undifferentiated (A(u4) to A(u512)), and differentiated (A(d1) to A(d8)) spermatogonia and preleptotene (PL) spermatocytes through 13 mitoses. Dogfish spermatogonial subpopulations present classical morphological characteristics but cannot be distinguished on the basis of molecular markers. This characterization has been initiated in mammals despite the difficulty to separate each spermatogonial subpopulation. For instance, both glial cell-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger protein (PLZF) are markers of undifferentiated spermatogonia, whereas receptor tyrosine kinase C-kit is a marker of differentiated spermatogonia. The aim of this study is to characterize spermatogonial markers and to differentiate several spermatogonial subpopulations. Dogfish cDNA sequences have been identified and validated by phylogenetic analyses for gfrα1, plzf, pou2, as well as for high-mobility group box proteins 2 and 3 (hmgb2 and 3) and for mini-chromosome maintenance protein 6 (mcm6). We have used the anatomical advantage of the polarized dogfish testis to analyze the expression of those markers by RT-PCR and in situ hybridization. gfrα1, pou2, and plzf have been detected in the testicular germinative zone, suggesting that spermatogonial markers are relatively well conserved among vertebrates but with a less restricted expression for plzf. Moreover, hmgb3 and mcm6 have been identified as new markers of differentiated spermatogonia. Finally, this first molecular characterization of spermatogonial subpopulations in a chondrichthyan model will be useful for further studies on the SSC niche evolution.


Assuntos
Cação (Peixe)/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Testículo/metabolismo , Animais , Biomarcadores/metabolismo , Masculino , Espermatócitos/metabolismo
15.
Gen Comp Endocrinol ; 180: 1-6, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23103685

RESUMO

It has been recently shown that the somatostatin gene family was likely composed of at least three paralogous genes in the common ancestor of all extant jawed vertebrates. These three genes, namely SS1, SS2 and SS5, are thought to have been generated through the two rounds of whole-genome duplications (2R) that took place early during the vertebrate evolution. In the present study, we report the cloning of three distinct somatostatin cDNAs from the dogfish Scylorhinus canicula, a member of the group of cartilaginous fish. We decided to call these cDNAs, at least provisionally, SSa, SSb and SSc, respectively. Two of them, SSa and SSb, encode proteins that both contain the same tetradecapeptide sequence at their C-terminal extremity (AGCKNFFWKTFTSC). This putative peptide is identical to that generated by the SS1 gene in other vertebrate species. The last cDNA, SSc, encodes a protein that contains at its C-terminal extremity the same peptide sequence as that generated by the SS2 gene in teleosts (APCKNFFWKTFTSC). Phylogenetic analysis showed that the SSa and SSc genes likely correspond to the dogfish counterparts of the SS1 and SS2 genes, respectively. In contrast, the phylogenetic status of the SSb gene is less clear. Several lines of evidence suggest that it could correspond to the SS5 gene, but this view will need to be confirmed, for example by synteny analysis. Finally, RT-PCR analysis revealed that SSa, SSb and SSc genes are differentially expressed in dogfish tissues, suggesting that the corresponding peptides may exert distinct functions.


Assuntos
Cação (Peixe)/genética , Somatostatina/genética , Animais , Clonagem Molecular , DNA Complementar , Evolução Molecular , Neuropeptídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Brain Behav Evol ; 80(2): 127-41, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22986828

RESUMO

The basic anatomy of the elasmobranch brain has been previously established after studying the organization of the different subdivisions in the adult brain. However, despite the relatively abundant immunohistochemical and hodologic studies performed in different species of sharks and skates, the organization of some brain subdivisions remains unclear. The present study focuses on some brain regions in which subdivisions established on the basis of anatomical data in adults remain controversial, such as the subpallium, mainly the striatal subdivision. Taking advantage of the great potential of the lesser spotted dogfish, Scyliorhinus canicula, as a model for developmental studies, we have characterized the subpallium throughout development and postembryonic stages by analyzing the distribution of immunomarkers for GABA, catecholamines, and neuropeptides, such as substance P. Moreover, we have analyzed the expression pattern of regulatory genes involved in the regionalization of the telencephalon, such as Dlx2, Nkx2.1, and Shh, and followed their derivatives throughout development in relation to the distribution of such neurochemical markers. For further characterization, we have also analyzed the patterns of innervation of the subpallium after applying tract-tracing techniques. Our observations may shed light on postulate equivalences of regions and nuclei among elasmobranchs and support homologies with other vertebrates.


Assuntos
Gânglios da Base , Encéfalo , Cação (Peixe) , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Animais Recém-Nascidos , Gânglios da Base/embriologia , Gânglios da Base/crescimento & desenvolvimento , Gânglios da Base/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Mapeamento Encefálico , Catecolaminas/metabolismo , Cação (Peixe)/anatomia & histologia , Cação (Peixe)/embriologia , Cação (Peixe)/crescimento & desenvolvimento , Embrião não Mamífero , Proteínas do Olho/metabolismo , Glutamato Descarboxilase/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/metabolismo
17.
Cells ; 11(8)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455988

RESUMO

The anterior-posterior (AP) axis in chordates is regulated by a conserved set of genes and signaling pathways, including Hox genes and retinoic acid (RA), which play well-characterized roles in the organization of the chordate body plan. The intermediate mesoderm (IM), which gives rise to all vertebrate kidneys, is an example of a tissue that differentiates sequentially along this axis. Yet, the conservation of the spatiotemporal regulation of the IM across vertebrates remains poorly understood. In this study, we used a comparative developmental approach focusing on non-conventional model organisms, a chondrichthyan (catshark), a cyclostome (lamprey), and a cephalochordate (amphioxus), to assess the involvement of RA in the regulation of chordate and vertebrate pronephros formation. We report that the anterior expression boundary of early pronephric markers (Pax2 and Lim1), positioned at the level of somite 6 in amniotes, is conserved in the catshark and the lamprey. Furthermore, RA, driving the expression of Hox4 genes like in amniotes, regulates the anterior pronephros boundary in the catshark. We find no evidence for the involvement of this regulatory hierarchy in the AP positioning of the lamprey pronephros and the amphioxus pronephros homolog, Hatschek's nephridium. This suggests that despite the conservation of Pax2 and Lim1 expressions in chordate pronephros homologs, the responsiveness of the IM, and hence of pronephric genes, to RA- and Hox-dependent regulation is a gnathostome novelty.


Assuntos
Cordados , Pronefro , Animais , Genes Homeobox , Lampreias , Tretinoína/farmacologia , Vertebrados/genética
18.
Front Neuroanat ; 16: 901451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991967

RESUMO

The hypothalamus is a key vertebrate brain region involved in survival and physiological functions. Understanding hypothalamic organization and evolution is important to deciphering many aspects of vertebrate biology. Recent comparative studies based on gene expression patterns have proposed the existence of hypothalamic histogenetic domains (paraventricular, TPa/PPa; subparaventricular, TSPa/PSPa; tuberal, Tu/RTu; perimamillary, PM/PRM; and mamillary, MM/RM), revealing conserved evolutionary trends. To shed light on the functional relevance of these histogenetic domains, this work aims to interpret the location of developed cell groups according to the prosomeric model in the hypothalamus of the catshark Scyliorhinus canicula, a representative of Chondrichthyans (the sister group of Osteichthyes, at the base of the gnathostome lineage). To this end, we review in detail the expression patterns of ScOtp, ScDlx2, and ScPitx2, as well as Pax6-immunoreactivity in embryos at stage 32, when the morphology of the adult catshark hypothalamus is already organized. We also propose homologies with mammals when possible. This study provides a comprehensive tool to better understand previous and novel data on hypothalamic development and evolution.

19.
Front Cell Dev Biol ; 10: 1015074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407110

RESUMO

Habenulae asymmetries are widespread across vertebrates and analyses in zebrafish, the reference model organism for this process, have provided insight into their molecular nature, their mechanisms of formation and their important roles in the integration of environmental and internal cues with a variety of organismal adaptive responses. However, the generality of the characteristics identified in this species remains an open question, even on a relatively short evolutionary scale, in teleosts. To address this question, we have characterized the broad organization of habenulae in the Atlantic salmon and quantified the asymmetries in each of the identified subdomains. Our results show that a highly conserved partitioning into a dorsal and a ventral component is retained in the Atlantic salmon and that asymmetries are mainly observed in the former as in zebrafish. A remarkable difference is that a prominent left-restricted pax6 positive nucleus is observed in the Atlantic salmon, but undetectable in zebrafish. This nucleus is not observed outside teleosts, and harbors a complex presence/absence pattern in this group, retaining its location and cytoarchitectonic organization in an elopomorph, the European eel. These findings suggest an ancient origin and high evolvability of this trait in the taxon. Taken together, our data raise novel questions about the variability of asymmetries across teleosts and their biological significance depending on ecological contexts.

20.
Nat Commun ; 13(1): 5537, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130934

RESUMO

The support of pluripotent cells over time is an essential feature of development. In eutherian embryos, pluripotency is maintained from naïve states in peri-implantation to primed pluripotency at gastrulation. To understand how these states emerged, we reconstruct the evolutionary trajectory of the Pou5 gene family, which contains the central pluripotency factor OCT4. By coupling evolutionary sequence analysis with functional studies in mouse embryonic stem cells, we find that the ability of POU5 proteins to support pluripotency originated in the gnathostome lineage, prior to the generation of two paralogues, Pou5f1 and Pou5f3 via gene duplication. In osteichthyans, retaining both genes, the paralogues differ in their support of naïve and primed pluripotency. The specialization of these duplicates enables the diversification of function in self-renewal and differentiation. By integrating sequence evolution, cell phenotypes, developmental contexts and structural modelling, we pinpoint OCT4 regions sufficient for naïve pluripotency and describe their adaptation over evolutionary time.


Assuntos
Células-Tronco Pluripotentes , Animais , Diferenciação Celular/genética , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA