Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-30637122

RESUMO

BACKGROUND: The Vanderbilt Institute for Clinical and Translational Research piloted the development of Project PLACENTA (PathLink Acquired gEstatioNal Tissue bAnk). This project investigated the feasibility of a fresh gestational tissue biobank, which provides tissue linked to electronic medical records for investigators interested in maternal-fetal health. METHODS: We developed a pipeline for collection of placental tissue from Labor and Delivery within approximately 30 minutes of delivery. An email alert was developed, to signal delivery, with the ability to specifically flag patients with certain phenotypic traits. Once collected, 4 to 8 mm punch biopsy cores were snap frozen and subsequently used for DNA, RNA and protein extraction. Tissue was also collected for Formalin Fixed Paraffin Embedded (FFPE) histology, flow cytometry, and quality control measures. RESULTS: Of 60 deliveries using the email notification system, 25 (42%) were sent to Pathology or assigned to other research protocols and were not available for collection, 10 (16%) were discarded prior to arrival at Labor and Delivery, and 25 (42%) were available for collection. Twenty placentas were collected and averaged 38 minutes per collection. DNA extraction yielded an average of 53 µg/µl per sample and RNA extraction yielded 679 ng/µl on average per sample. Proteomic studies showed no degradation of protein, abundant and similar quantities of protein across samples and differentiation between the amnion, decidua, and villi. Histological studies showed good quality for interpretation and occasional pathology including multifocal chronic villitis, meconium laden macrophages, and Stage 2 acute chorioamnionitis. Flow cytometry demonstrated good cell viability after isolation.

2.
Mol Biol Cell ; 15(1): 71-80, 2004 01.
Artigo em Inglês | MEDLINE | ID: mdl-14528010

RESUMO

In most eukaryotes, genes encoding ribosomal RNAs (rDNA) are clustered in long tandem head-to-tail repeats. Studies of Saccharomyces cerevisiae have indicated that rDNA copy number is maintained through recombination events associated with site-specific blockage of replication forks (RFs). Here, we describe two Schizosaccharomyces pombe proteins, homologs of S. cerevisiae Slx1 and Slx4, as subunits of a novel type of endonuclease that maintains rDNA copy number. The Slx1-Slx4-dependent endonuclease introduces single-strand cuts in duplex DNA on the 3' side of junctions with single-strand DNA. Deletion of Slx1 or Rqh1 RecQ-like DNA helicase provokes rDNA contraction, whereas simultaneous elimination of Slx1-Slx4 endonuclease and Rqh1 is lethal. Slx1 associates with chromatin at two foci characteristic of the two rDNA repeat loci in S. pombe. We propose a model in which the Slx1-Slx4 complex is involved in the control of the expansion and contraction of the rDNA loci by initiating recombination events at stalled RFs.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , DNA Ribossômico , Endonucleases/metabolismo , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas/metabolismo , Recombinação Genética , Schizosaccharomyces/genética , Alinhamento de Sequência
3.
Clin Cancer Res ; 17(20): 6490-9, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21878537

RESUMO

PURPOSE: Radiation therapy continues to be an important therapeutic strategy for providing definitive local/regional control of human cancer. However, oncogenes that harbor driver mutations and/or amplifications can compromise therapeutic efficacy. Thus, there is a need for novel approaches that enhance the DNA damage produced by ionizing radiation. EXPERIMENTAL DESIGN: A forward chemical genetic approach coupled with cell-based phenotypic screening of several tumor cell lines was used to identify a novel chemical entity (NCE) that functioned as a radiation sensitizer. Proteomics, comet assays, confocal microscopy, and immunoblotting were used to identify the biological target. RESULTS: The screening process identified a 5-((N-benzyl-1H-indol-3-yl)-methylene)pyrimidine-2,4,6(1H,3H,5H)trione as an NCE that radiosensitized cancer cells expressing amplified and/or mutated RAS, ErbB, PIK3CA, and/or BRAF oncogenes. Affinity-based solid-phase resin capture followed by liquid chromatography/tandem mass spectrometry identified the chaperone nucleophosmin (NPM) as the NCE target. SiRNA suppression of NPM abrogated radiosensitization by the NCE. Confocal microscopy showed that the NCE inhibited NPM shuttling to radiation-induced DNA damage repair foci, and the analysis of comet assays indicated a diminished rate of DNA double-strand break repair. CONCLUSION: These data support the hypothesis that inhibition of DNA repair due to inhibition of NPM shuttling increases the efficacy of DNA-damaging therapeutic strategies.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Proteínas Nucleares/metabolismo , Radiossensibilizantes/farmacologia , Animais , Barbitúricos/farmacologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Humanos , Indóis/farmacologia , Camundongos , Camundongos Nus , Chaperonas Moleculares/metabolismo , Terapia de Alvo Molecular , Neoplasias/metabolismo , Nucleofosmina , Tolerância a Radiação/efeitos dos fármacos , Distribuição Aleatória
4.
Brief Funct Genomic Proteomic ; 5(2): 98-111, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16772276

RESUMO

State-of-the-art proteomics workflows involve multiple interdependent steps: sample preparation, protein-peptide separation, mass spectrometry and data analysis. While improvements in any of these steps can increase the depth and breadth of analysis, advances in mass spectrometry have catalysed many of the most important developments. We discuss common classes of mass analysers and how these analysers are put together to produce some of the most popular mass spectrometry platforms. The capabilities of these platforms determine how they can be used in a variety of common proteomic strategies and, in turn, what types of biological questions can be addressed. Moving forward, powerful new hybrid mass spectrometers and application of emerging types of tandem mass spectrometry promise that our ability to analyse complex mixtures of proteins will continue to advance.


Assuntos
Misturas Complexas/análise , Espectrometria de Massas/tendências , Proteoma/análise , Espectrometria de Massas/métodos , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA