Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 28(2): 279-91, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20872051

RESUMO

PURPOSE: The purpose of the present study was to explore the utilization of cinnamon-coated gold nanoparticles (Cin-AuNPs) as CT/optical contrast-enhancement agents for detection of cancer cells. METHODS: Cin-AuNPs were synthesized by a "green" procedure, and the detailed characterization was performed by physico-chemical analysis. Cytotoxicity and cellular uptake studies were carried out in normal human fibroblast and cancerous (PC-3 and MCF-7) cells, respectively. The efficacy of detecting cancerous cells was monitored using a photoacoustic technique. In vivo biodistribution was studied after IV injection of Cin-AuNPs in mice, and also a CT phantom model was generated. RESULTS: Biocompatible Cin-AuNPs were synthesized with high purity. Significant uptake of these gold nanoparticles was observed in PC-3 and MCF-7 cells. Cin-AuNPs internalized in cancerous cells facilitated detectable photoacoustic signals. In vivo biodistribution in normal mice showed steady accumulation of gold nanoparticles in lungs and rapid clearance from blood. Quantitative analysis of CT values in phantom model revealed that the cinnamon-phytochemical-coated AuNPs have reasonable attenuation efficiency. CONCLUSIONS: The results indicate that these non-toxic Cin-AuNPs can serve as excellent CT/ photoacoustic contrast-enhancement agents and may provide a novel approach toward tumor detection through nanopharmaceuticals.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Neoplasias/diagnóstico , Intensificação de Imagem Radiográfica/métodos , Animais , Linhagem Celular Tumoral , Cinnamomum zeylanicum/química , Meios de Contraste/química , Fibroblastos , Humanos , Camundongos , Neoplasias/patologia , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Distribuição Tecidual
2.
Small ; 4(9): 1425-36, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18642250

RESUMO

The present study demonstrates an unprecedented green process for the production of gold nanoparticles by simple treatment of gold salts with soybean extracts. Reduction capabilities of antioxidant phytochemicals present in soybean and their ability to reduce gold salts chemically to nanoparticles with subsequent coating of proteins and a host of other phytochemicals present in soybean on the freshly generated gold nanoparticles are discussed. The new genre of green nanoparticles exhibit remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. MTT assays reveal that the green gold nanoparticles are nontoxic and thus provide excellent opportunities for their applications in nanomedicine for molecular imaging and therapy. The overall strategy described herein for the generation of gold nanoparticles meets all 12 principles of green chemistry, as no "man-made" chemicals, other than the gold salts, are used in the green nanotechnological process.


Assuntos
Materiais Biocompatíveis/química , Glycine max/química , Ouro/química , Nanopartículas Metálicas/química , Carboidratos/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fenômenos Químicos , Físico-Química , Humanos , Isoflavonas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Peso Molecular , Tamanho da Partícula , Proteínas de Plantas/química , Espectrofotometria
3.
J Mater Chem ; 19(19): 2912-2920, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20161162

RESUMO

Phytochemicals occluded in tea have been extensively used as dietary supplements and as natural pharmaceuticals in the treatment of various diseases including human cancer. Results on the reduction capabilities of phytochemicals present in tea to reduce gold salts to the corresponding gold nanoparticles are presented in this paper. The phytochemicals present in tea serve the dual roles as effective reducing agents to reduce gold and also as stabilizers to provide robust coating on the gold nanoparticles in a single step. The Tea-generated gold nanoparticles (T-AuNPs), have demonstrated remarkable in vitro stability in various buffers including saline, histidine, HSA, and cysteine solutions. T-AuNPs with phytochemical coatings have shown significant affinity toward prostate (PC-3) and breast (MCF-7) cancer cells. Results on the cellular internalization of T-AuNPs through endocytosis into the PC-3 and MCF-7 cells are presented. The generation of T-AuNPs follows all principles of green chemistry and have been found to be non toxic as assessed through MTT assays. No 'man made' chemicals, other than gold salts, are used in this true biogenic green nanotechnological process thus paving excellent opportunities for their applications in molecular imaging and therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA