Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Development ; 143(22): 4203-4213, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27707795

RESUMO

Intrinsic cell microtubule (MT) polarity, together with molecular motors and adaptor proteins, determines mitochondrial polarized targeting and MT-dependent transport. In polarized cells, such as neurons, mitochondrial mobility and transport require the regulation of kinesin and dynein by two adaptor proteins, Milton and Miro. Recently, we found that dynein heavy chain 64C (Dhc64C) is the primary motor protein for both anterograde and retrograde transport of mitochondria in the Drosophila bristle. In this study, we show that a molecular lesion in the Dhc64C allele that reduced bristle mitochondrial velocity generated a variant that acts as a 'slow' dynein in an MT-gliding assay, indicating that dynein directly regulates mitochondrial transport. We also showed that in milton-RNAi flies, mitochondrial flux into the bristle shaft, but not velocity, was significantly reduced. Surprisingly, mitochondria retrograde flux, but not net velocity, was significantly decreased in miro-RNAi flies. We thus reveal a new mode of mitochondrial sorting in polarized cell growth, whereby bi-directional mitochondrial transport undertaken exclusively by dynein is regulated by Milton in the anterograde direction and by a Miro-dependent switch to the retrograde direction.


Assuntos
Transporte Axonal/genética , Polaridade Celular/fisiologia , Proteínas de Drosophila/fisiologia , Dineínas/fisiologia , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Animais Geneticamente Modificados , Transporte Biológico , Cílios/genética , Cílios/metabolismo , Cílios/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Dineínas/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/genética , Transporte Proteico/genética , Pupa , Proteínas rho de Ligação ao GTP/genética
2.
Cell Mol Life Sci ; 75(2): 163-176, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28702760

RESUMO

Mitochondria are cellular organelles of crucial importance, playing roles in cellular life and death. In certain cell types, such as neurons, mitochondria must travel long distances so as to meet metabolic demands of the cell. Mitochondrial movement is essentially microtubule (MT) based and is executed by two main motor proteins, Dynein and Kinesin. The organization of the cellular MT network and the identity of motors dictate mitochondrial transport. Tight coupling between MTs, motors, and the mitochondria is needed for the organelle precise localization. Two adaptor proteins are involved directly in mitochondria-motor coupling, namely Milton known also as TRAK, which is the motor adaptor, and Miro, which is the mitochondrial protein. Here, we discuss the active mitochondria transport process, as well as motor-mitochondria coupling in the context of MT organization in different cell types. We focus on mitochondrial trafficking in different cell types, specifically neurons, migrating cells, and polarized epithelial cells.


Assuntos
Microtúbulos/metabolismo , Microtúbulos/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Transporte Proteico/fisiologia , Animais , Humanos , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia
3.
PLoS One ; 14(10): e0223174, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31577833

RESUMO

In the present report, we used highly elongated Drosophila bristle cells to dissect the role of dynein heavy chain (Dhc64C) in Golgi organization. We demonstrated that whereas in the bristle "somal" region Golgi units are composed of cis-, medial, and trans-Golgi compartments ("complete Golgi"), the bristle shaft contains Golgi satellites that lack the trans-Golgi compartment (hereafter referred to as "incomplete Golgi") and which are static and localized at the base area. However, in Dhc64C mutants, the entire bristle shaft was filled with complete Golgi units containing ectopic trans-Golgi components. To further understand Golgi bristle organization, we tested the roles of microtubule (MT) polarity and the Dhc-opposing motor, kinesin heavy chain (Khc). For our surprise, we found that in Khc and Ik2Dominant-negative (DN) flies in which the polarized organization of MTs is affected, the bristle shaft was filled with complete Golgi, similarly to what is seen in Dhc64C flies. Thus, we demonstrated that MTs and the motor proteins Dhc and Khc are required for bristle Golgi organization. However, the fact that both Dhc64C and Khc flies showed similar Golgi defects calls for an additional work to elucidate the molecular mechanism describing why these factors are required for bristle Golgi organization.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Animais , Cinesinas/metabolismo , Mutação/genética
4.
PLoS One ; 11(4): e0148500, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27078856

RESUMO

In many cancers, cells undergo re-programming of metabolism, cell survival and anti-apoptotic defense strategies, with the proteins mediating this reprogramming representing potential biomarkers. Here, we searched for novel biomarker proteins in chronic lymphocytic leukemia (CLL) that can impact diagnosis, treatment and prognosis by comparing the protein expression profiles of peripheral blood mononuclear cells from CLL patients and healthy donors using specific antibodies, mass spectrometry and binary logistic regression analyses and other bioinformatics tools. Mass spectrometry (LC-HR-MS/MS) analysis identified 1,360 proteins whose expression levels were modified in CLL-derived lymphocytes. Some of these proteins were previously connected to different cancer types, including CLL, while four other highly expressed proteins were not previously reported to be associated with cancer, and here, for the first time, DDX46 and AK3 are linked to CLL. Down-regulation expression of two of these proteins resulted in cell growth inhibition. High DDX46 expression levels were associated with shorter survival of CLL patients and thus can serve as a prognosis marker. The proteins with modified expression include proteins involved in RNA splicing and translation and particularly mitochondrial proteins involved in apoptosis and metabolism. Thus, we focused on several metabolism- and apoptosis-modulating proteins, particularly on the voltage-dependent anion channel 1 (VDAC1), regulating both metabolism and apoptosis. Expression levels of Bcl-2, VDAC1, MAVS, AIF and SMAC/Diablo were markedly increased in CLL-derived lymphocytes. VDAC1 levels were highly correlated with the amount of CLL-cancerous CD19+/CD5+ cells and with the levels of all other apoptosis-modulating proteins tested. Binary logistic regression analysis demonstrated the ability to predict probability of disease with over 90% accuracy. Finally, based on the changes in the levels of several proteins in CLL patients, as revealed from LC-HR-MS/MS, we could distinguish between patients in a stable disease state and those who would be later transferred to anti-cancer treatments. The over-expressed proteins can thus serve as potential biomarkers for early diagnosis, prognosis, new targets for CLL therapy, and treatment guidance of CLL, forming the basis for personalized therapy.


Assuntos
Biomarcadores Tumorais/sangue , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucócitos Mononucleares/metabolismo , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Idoso , Biomarcadores Tumorais/genética , Western Blotting , Cromatografia Líquida , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Masculino , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
5.
Biol Open ; 4(12): 1696-706, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26581590

RESUMO

The microtubule (MT) plus-end motor kinesin heavy chain (Khc) is well known for its role in long distance cargo transport. Recent evidence showed that Khc is also required for the organization of the cellular MT network by mediating MT sliding. We found that mutations in Khc and the gene of its adaptor protein, kinesin light chain (Klc) resulted in identical bristle morphology defects, with the upper part of the bristle being thinner and flatter than normal and failing to taper towards the bristle tip. We demonstrate that bristle mitochondria transport requires Khc but not Klc as a competing force to dynein heavy chain (Dhc). Surprisingly, we demonstrate for the first time that Dhc is the primary motor for both anterograde and retrograde fast mitochondria transport. We found that the upper part of Khc and Klc mutant bristles lacked stable MTs. When following dynamic MT polymerization via the use of GFP-tagged end-binding protein 1 (EB1), it was noted that at Khc and Klc mutant bristle tips, dynamic MTs significantly deviated from the bristle parallel growth axis, relative to wild-type bristles. We also observed that GFP-EB1 failed to concentrate as a focus at the tip of Khc and Klc mutant bristles. We propose that the failure of bristle tapering is due to defects in directing dynamic MTs at the growing tip. Thus, we reveal a new function for Khc and Klc in directing dynamic MTs during polarized cell growth. Moreover, we also demonstrate a novel mode of coordination in mitochondrial transport between Khc and Dhc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA