Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(4): 1140-1158, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38124486

RESUMO

Chlorophyll degradation causes the release of phytol, which is converted into phytyl diphosphate (phytyl-PP) by phytol kinase (VITAMIN E PATHWAY GENE5 [VTE5]) and phytyl phosphate (phytyl-P) kinase (VTE6). The kinase pathway is important for tocopherol synthesis, as the Arabidopsis (Arabidopsis thaliana) vte5 mutant contains reduced levels of tocopherol. Arabidopsis harbors one paralog of VTE5, farnesol kinase (FOLK) involved in farnesol phosphorylation. Here, we demonstrate that VTE5 and FOLK harbor kinase activities for phytol, geranylgeraniol, and farnesol with different specificities. While the tocopherol content of the folk mutant is unchanged, vte5-2 folk plants completely lack tocopherol. Tocopherol deficiency in vte5-2 plants can be complemented by overexpression of FOLK, indicating that FOLK is an authentic gene of tocopherol synthesis. The vte5-2 folk plants contain only ∼40% of wild-type amounts of phylloquinone, demonstrating that VTE5 and FOLK both contribute in part to phylloquinone synthesis. Tocotrienol and menaquinone-4 were produced in vte5-2 folk plants after supplementation with homogentisate or 1,4-dihydroxy-2-naphthoic acid, respectively, indicating that their synthesis is independent of the VTE5/FOLK pathway. These results show that phytyl moieties for tocopherol synthesis are completely but, for phylloquinone production, only partially derived from geranylgeranyl-chlorophyll and phytol phosphorylation by VTE5 and FOLK.


Assuntos
Arabidopsis , Fosfotransferases (Aceptor do Grupo Álcool) , Tocoferóis , Tocoferóis/metabolismo , Vitamina E/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Vitamina K 1/metabolismo , Fitol/metabolismo , Farneseno Álcool/metabolismo , Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Clorofila/metabolismo
2.
Plant Cell ; 35(11): 3973-4001, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37282730

RESUMO

Leaf and floral tissue degeneration is a common feature in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.


Assuntos
Hordeum , Inflorescência , Hordeum/genética , Hordeum/metabolismo , Folhas de Planta/metabolismo , Meristema/genética , Perfilação da Expressão Gênica , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Cell ; 34(7): 2785-2805, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35512341

RESUMO

As the gall-inducing smut fungus Ustilago maydis colonizes maize (Zea mays) plants, it secretes a complex effector blend that suppresses host defense responses, including production of reactive oxygen species (ROS) and redirects host metabolism to facilitate colonization. We show that the U. maydis effector ROS burst interfering protein 1 (Rip1), which is involved in pathogen-associated molecular pattern (PAMP)-triggered suppression of host immunity, is functionally conserved in several other monocot-infecting smut fungi. We also have identified a conserved C-terminal motif essential for Rip1-mediated PAMP-triggered suppression of the ROS burst. The maize susceptibility factor lipoxygenase 3 (Zmlox3) bound by Rip1 was relocalized to the nucleus, leading to partial suppression of the ROS burst. Relocalization was independent of its enzymatic activity, revealing a distinct function for ZmLox3. Most importantly, whereas Zmlox3 maize mutant plants showed increased resistance to U. maydis wild-type strains, rip1 deletion strains infecting the Zmlox3 mutant overcame this effect. This could indicate that Rip1-triggered host resistance depends on ZmLox3 to be suppressed and that lox3 mutation-based resistance of maize to U. maydis requires functional Rip1. Together, our results reveal that Rip1 acts in several cellular compartments to suppress immunity and that targeting of ZmLox3 by Rip1 is responsible for the suppression of Rip1-dependent reduced susceptibility of maize to U. maydis.


Assuntos
Ustilago , Zea mays , Basidiomycota , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Ustilago/genética
4.
Chromosome Res ; 32(2): 8, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717688

RESUMO

Holocentric species are characterized by the presence of centromeres throughout the length of the chromosomes. We confirmed the holocentricity of the dioecious, small chromosome-size species Myristica fragrans based on the chromosome-wide distribution of the centromere-specific protein KNL1, α-tubulin fibers, and the cell cycle-dependent histone H3 serine 28 phosphorylation (H3S28ph) mark. Each holocentromere is likely composed of, on average, ten centromere units, but none of the identified and in situ hybridized high-copy satellite repeats is centromere-specific. No sex-specific major repeats are present in the high-copy repeat composition of male or female plants, or a significant difference in genome size was detected. Therefore, it is unlikely that M. fragrans possesses heteromorphic sex chromosomes.


Assuntos
Centrômero , Cromossomos de Plantas , DNA Satélite , Myristica , DNA Satélite/genética , Centrômero/genética , Myristica/química , Myristica/genética , Histonas/genética , Tubulina (Proteína)/genética , Hibridização in Situ Fluorescente , Proteínas de Plantas/genética
5.
BMC Plant Biol ; 24(1): 577, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890560

RESUMO

BACKGROUND: Seed retention is the basic prerequisite for seed harvest. However, only little breeding progress has been achieved for this trait in the major forage grasses. The aim of this study was to evaluate the potential of plant genetic resources of the important fodder grasses Festuca pratensis Huds. and Lolium perenne L. as source for seed retention in the breeding process. Furthermore, the morphology of the abscission zone, where shattering occurs, was studied on the cell tissue level in different developmental stages of contrasting accessions. RESULTS: 150 and 286 accessions of Festuca pratensis and Lolium perenne were screened for seed retention, respectively. Contrasting accessions were selected to be tested in a second year. We found a great variation in seed retention in Festuca pratensis and Lolium perenne, ranging from 13 to 71% (average: 35%) and 12 to 94% (average: 49%), respectively, in the first year. Seed retention was generally lower in the second year. Cultivars were within the accessions with highest seed retention in Festuca pratensis, but had lower seed retention than ecotypes in Lolium perenne. Field-shattered seeds had a lower thousand grain weight than retained seeds. Cell layers of the abscission zone appeared already in early seed stages and were nested within each other in accessions with high seed retention, while there were two to three superimposed layers in accessions with low seed retention. CONCLUSIONS: Plant genetic resources of Lolium perenne might be a valuable source for breeding varieties with high seed retention. However, simultaneous selection for high seed weight is necessary for developing successful commercial cultivars.


Assuntos
Festuca , Lolium , Fenótipo , Sementes , Lolium/crescimento & desenvolvimento , Lolium/genética , Lolium/anatomia & histologia , Festuca/genética , Festuca/crescimento & desenvolvimento , Festuca/anatomia & histologia , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/anatomia & histologia
6.
J Exp Bot ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38364822

RESUMO

Foliar development involves successive phases of cell proliferation and expansion that determine the final leaf size, and is characterized by an early burst of reactive oxygen species generated in the photosynthetic electron transport chain (PETC). Introduction of the alternative PETC acceptor flavodoxin in tobacco chloroplasts led to a reduction in leaf size associated to lower cell expansion, without affecting cell numbers per leaf. Proteomic analysis showed that components of the light-harvesting systems accumulated before electron-transport proteins, suggesting a mechanism for the early oxidative event. Flavodoxin expression did not affect biogenesis of the PETC but prevented hydroperoxide build-up through its function as electron sink. Mature leaves from flavodoxin-expressing plants were shown to contain higher levels of transcripts encoding components of the proteasome, a key negative modulator of organ size. Proteome profiling revealed that this differential accumulation initiated during expansion and led to increased proteasomal activity, whereas a proteasome inhibitor reverted the flavodoxin-dependent size phenotype. Cells expressing plastid-targeted flavodoxin displayed lower endoreduplication, also associated to decreased organ size. These results provide novel insights into the regulation of leaf growth by chloroplast-generated redox signals, and highlight the potential of alternative electron shuttles to investigate the link(s) between photosynthesis and plant development.

7.
Ann Bot ; 133(7): 983-996, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38407464

RESUMO

BACKGROUND AND AIMS: Vascular patterning is intimately related to plant form and function. Here, using barley (Hordeum vulgare) as a model, we studied the vascular anatomy of the spike-type inflorescence. The main aim of the present work was to clarify the relationship between rachis (spike axis) vasculature and spike size, to define vascular dynamics and to discuss the implications for transport capacity and its interaction with the spikelets. METHODS: We used serial transverse internode sections to determine the internode area, vascular area and number of veins along the rachis of several barley lines. KEY RESULTS: Internode area and total vascular area show a clear positive correlation with spike size, whereas the number of veins is only weakly correlated. The lateral periphery of the rachis contains large mature veins of constant size, whereas the central part is occupied by small immature veins. Spikelet-derived veins entering the rachis often merge with the immature rachis veins but never merge with the mature veins. An increase in floret fertility through the conversion of a two-rowed barley into an isogenic six-rowed line, in addition to a decrease in floret fertility owing to enhanced pre-anthesis tip degeneration caused by the mutation tip sterile 2.b (tst2.b), significantly affected vein size but had limited to no effects on the number of veins or internode area. CONCLUSIONS: The rachis vasculature is the result of a two-step process involving an initial layout followed by size adjustment according to floret fertility/spike size. The restriction of large mature vessels to the periphery and that of small immature vessels to the centre of the rachis suggests that long-distance transport and local supply to spikelets are spatially separated processes. The identification of spikelet-derived veins entering the rachis without fusing with its vasculature indicates that a vascular continuity between rachis and spikelets might be non-essential.


Assuntos
Hordeum , Feixe Vascular de Plantas , Hordeum/anatomia & histologia , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Feixe Vascular de Plantas/anatomia & histologia , Feixe Vascular de Plantas/fisiologia , Feixe Vascular de Plantas/crescimento & desenvolvimento , Transporte Biológico , Inflorescência/anatomia & histologia , Inflorescência/crescimento & desenvolvimento , Inflorescência/fisiologia
8.
J Pathol ; 261(2): 139-155, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555362

RESUMO

Within the pancreas, Keratin 19 (KRT19) labels the ductal lineage and is a determinant of pancreatic ductal adenocarcinoma (PDAC). To investigate KRT19 expression dynamics, we developed a human pluripotent stem cell (PSC)-based KRT19-mCherry reporter system in different genetic backgrounds to monitor KRT19 expression from its endogenous gene locus. A differentiation protocol to generate mature pancreatic duct-like organoids was applied. While KRT19/mCherry expression became evident at the early endoderm stage, mCherry signal was present in nearly all cells at the pancreatic endoderm (PE) and pancreatic progenitor (PP) stages. Interestingly, despite homogenous KRT19 expression, mCherry positivity dropped to 50% after ductal maturation, indicating a permanent switch from biallelic to monoallelic expression. DNA methylation profiling separated the distinct differentiation intermediates, with site-specific DNA methylation patterns occurring at the KRT19 locus during ductal maturation. Accordingly, the monoallelic switch was partially reverted upon treatment with a DNA-methyltransferase inhibitor. In human PDAC cohorts, high KRT19 levels correlate with low locus methylation and decreased survival. At the same time, activation of oncogenic KRASG12D signalling in our reporter system reversed monoallelic back to biallelic KRT19 expression in pancreatic duct-like organoids. Allelic reactivation was also detected in single-cell transcriptomes of human PDACs, which further revealed a positive correlation between KRT19 and KRAS expression. Accordingly, KRAS mutant PDACs had higher KRT19 mRNA but lower KRT19 gene locus DNA methylation than wildtype counterparts. KRT19 protein was additionally detected in plasma of PDAC patients, with higher concentrations correlating with shorter progression-free survival in gemcitabine/nabPaclitaxel-treated and opposing trends in FOLFIRINOX-treated patients. Apart from being an important pancreatic ductal lineage marker, KRT19 appears tightly controlled via a switch from biallelic to monoallelic expression during ductal lineage entry and is aberrantly expressed after oncogenic KRASG12D expression, indicating a role in PDAC development and malignancy. Soluble KRT19 might serve as a relevant biomarker to stratify treatment. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica , Queratina-19/genética , Queratina-19/metabolismo , Metilação de DNA , Proteínas Proto-Oncogênicas p21(ras)/genética , Carcinogênese/genética , Carcinoma Ductal Pancreático/patologia , Expressão Gênica , Neoplasias Pancreáticas
9.
Phytopathology ; 114(1): 282-293, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37366568

RESUMO

Hibiscus green spot virus 2 (HGSV-2), a member of the genus Higrevirus (family Kitaviridae), is a positive-stranded RNA virus associated with leprosis-like symptoms in citrus and green spots on leaves in hibiscus. HGSV-2 has only been reported in Hawaii, and while it is speculated that mites in the genus Brevipalpus might be responsible for its transmission, proper transmission assays have yet to be conducted. This study characterizes additional citrus and hibiscus isolates of HGSV-2 collected from two Hawaiian Islands. We constructed an infectious cDNA clone from a hibiscus isolate of HGSV-2 collected on Oahu and demonstrated its ability to infect several experimental hosts, including Phaseolus vulgaris, Nicotiana tabacum, and N. benthamiana, as well as natural hosts, Citrus reticulata and Hibiscus arnottianus. Bacilliform virions with varied sizes of 33 to 120 nm (length) and 14 to 70 nm (diameter) were observed in partially purified preparations obtained from agroinoculated leaves. Virus progeny from the infectious cDNA clone was found to be infectious after mechanical transmission to N. benthamiana and to cause local lesions. Finally, an isoline colony of the mite Brevipalpus azores had vector competence to transmit a citrus isolate of HGSV-2 collected from Maui to citrus and hibiscus plants, demonstrating the mite-borne nature of HGSV-2. The infectious cDNA clone developed in this study is the first reverse-genetics system for a kitavirid and will be fundamental to better characterize basic biology of HGSV-2 and its interactions with host plants and mite vectors.


Assuntos
Citrus , Hibiscus , Ácaros , Vírus de Plantas , Vírus de RNA , Animais , Hibiscus/genética , DNA Complementar/genética , Genética Reversa , Vírus de Plantas/genética , Doenças das Plantas , Vírus de RNA/genética , Ácaros/genética
10.
BMC Biol ; 21(1): 55, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941669

RESUMO

BACKGROUND: The reactivation of genetic programs from early development is a common mechanism for injury-induced organ regeneration. T-box 3 (TBX3) is a member of the T-box family of transcription factors previously shown to regulate pluripotency and subsequent lineage commitment in a number of tissues, including limb and lung. TBX3 is also involved in lung and heart organogenesis. Here, we provide a comprehensive and thorough characterization of TBX3 and its role during pancreatic organogenesis and regeneration. RESULTS: We interrogated the level and cell specificity of TBX3 in the developing and adult pancreas at mRNA and protein levels at multiple developmental stages in mouse and human pancreas. We employed conditional mutagenesis to determine its role in murine pancreatic development and in regeneration after the induction of acute pancreatitis. We found that Tbx3 is dynamically expressed in the pancreatic mesenchyme and epithelium. While Tbx3 is expressed in the developing pancreas, its absence is likely compensated by other factors after ablation from either the mesenchymal or epithelial compartments. In an adult model of acute pancreatitis, we found that a lack of Tbx3 resulted in increased proliferation and fibrosis as well as an enhanced inflammatory gene programs, indicating that Tbx3 has a role in tissue homeostasis and regeneration. CONCLUSIONS: TBX3 demonstrates dynamic expression patterns in the pancreas. Although TBX3 is dispensable for proper pancreatic development, its absence leads to altered organ regeneration after induction of acute pancreatitis.


Assuntos
Pancreatite , Adulto , Humanos , Animais , Camundongos , Doença Aguda , Pancreatite/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Pâncreas/metabolismo , Organogênese/genética
11.
Plant Cell Physiol ; 64(12): 1494-1510, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37329302

RESUMO

Nucleotide limitation and imbalance is a well-described phenomenon in animal research but understudied in the plant field. A peculiarity of pyrimidine de novo synthesis in plants is the complex subcellular organization. Here, we studied two organellar localized enzymes in the pathway, with chloroplast aspartate transcarbamoylase (ATC) and mitochondrial dihydroorotate dehydrogenase (DHODH). ATC knock-downs were most severely affected, exhibiting low levels of pyrimidine nucleotides, a low energy state, reduced photosynthetic capacity and accumulation of reactive oxygen species. Furthermore, altered leaf morphology and chloroplast ultrastructure were observed in ATC mutants. Although less affected, DHODH knock-down mutants showed impaired seed germination and altered mitochondrial ultrastructure. Thus, DHODH might not only be regulated by respiration but also exert a regulatory function on this process. Transcriptome analysis of an ATC-amiRNA line revealed massive alterations in gene expression with central metabolic pathways being downregulated and stress response and RNA-related pathways being upregulated. In addition, genes involved in central carbon metabolism, intracellular transport and respiration were markedly downregulated in ATC mutants, being most likely responsible for the observed impaired growth. We conclude that impairment of the first committed step in pyrimidine metabolism, catalyzed by ATC, leads to nucleotide limitation and by this has far-reaching consequences on metabolism and gene expression. DHODH might closely interact with mitochondrial respiration, as seen in delayed germination, which is the reason for its localization in this organelle.


Assuntos
Di-Hidro-Orotato Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Nucleotídeos/genética , Nucleotídeos/metabolismo , Fotossíntese/genética , Expressão Gênica , Pirimidinas , Sementes/metabolismo
12.
BMC Plant Biol ; 23(1): 445, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37735356

RESUMO

BACKGROUND: Drought is a major environmental stress that affects crop productivity worldwide. Although previous research demonstrated links between strigolactones (SLs) and drought, here we used barley (Hordeum vulgare) SL-insensitive mutant hvd14 (dwarf14) to scrutinize the SL-dependent mechanisms associated with water deficit response. RESULTS: We have employed a combination of transcriptomics, proteomics, phytohormonomics analyses, and physiological data to unravel differences between wild-type and hvd14 plants under drought. Our research revealed that drought sensitivity of hvd14 is related to weaker induction of abscisic acid-responsive genes/proteins, lower jasmonic acid content, higher reactive oxygen species content, and lower wax biosynthetic and deposition mechanisms than wild-type plants. In addition, we identified a set of transcription factors (TFs) that are exclusively drought-induced in the wild-type barley. CONCLUSIONS: Critically, we resolved a comprehensive series of interactions between the drought-induced barley transcriptome and proteome responses, allowing us to understand the profound effects of SLs in alleviating water-limiting conditions. Several new avenues have opened for developing barley more resilient to drought through the information provided. Moreover, our study contributes to a better understanding of the complex interplay between genes, proteins, and hormones in response to drought, and underscores the importance of a multidisciplinary approach to studying plant stress response mechanisms.


Assuntos
Hordeum , Hordeum/genética , Secas , Multiômica , Percepção
13.
Physiol Plant ; 175(5): e13998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882279

RESUMO

Proper short- and long-term acclimation to different growth light intensities is essential for the survival and competitiveness of plants in the field. High light exposure is known to induce the down-regulation and photoinhibition of photosystem II (PSII) activity to reduce photo-oxidative stress. The xanthophyll zeaxanthin (Zx) serves central photoprotective functions in these processes. We have shown in recent work with different plant species (Arabidopsis, tobacco, spinach and pea) that photoinhibition of PSII and degradation of the PSII reaction center protein D1 is accompanied by the inactivation and degradation of zeaxanthin epoxidase (ZEP), which catalyzes the reconversion of Zx to violaxanthin. Different high light sensitivity of the above-mentioned species correlated with differential down-regulation of both PSII and ZEP activity. Applying light and electron microscopy, chlorophyll fluorescence, and protein and pigment analyses, we investigated the acclimation properties of these species to different growth light intensities with respect to the ability to adjust their photoprotective strategies. We show that the species differ in phenotypic plasticity in response to short- and long-term high light conditions at different morphological and physiological levels. However, the close co-regulation of PSII and ZEP activity remains a common feature in all species and under all conditions. This work supports species-specific acclimation strategies and properties in response to high light stress and underlines the central role of the xanthophyll Zx in photoprotection.


Assuntos
Arabidopsis , Luz , Oxirredutases/metabolismo , Xantofilas/metabolismo , Zeaxantinas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Luteína/metabolismo , Arabidopsis/metabolismo , Aclimatação , Clorofila/metabolismo , Fotossíntese
14.
Arch Virol ; 168(2): 40, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609629

RESUMO

High-throughput sequencing was used to analyze Hibiscus rosa-sinensis (family Malvaceae) plants with virus-like symptoms in Hawaii. Bioinformatic and phylogenetic analysis revealed the presence of two tobamoviruses, hibiscus latent Fort Pierce virus (HLFPV) and a new tobamovirus with the proposed name "hibiscus latent Hawaii virus" (HLHV). This is the first report of the complete sequence, genome organization, and phylogenetic characterization of a tobamovirus infecting hibiscus in Hawaii. RT-PCR with virus-specific primers and Sanger sequencing further confirmed the presence of these viruses. Inoculation experiments showed that HLFPV could be mechanically transmitted to Nicotiana benthamiana and N. tabacum, while HLHV could only be mechanically transmitted to N. benthamiana.


Assuntos
Hibiscus , Rosa , Tobamovirus , Tobamovirus/genética , Filogenia , Havaí , Genoma Viral
15.
Proc Natl Acad Sci U S A ; 117(11): 6216-6222, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123083

RESUMO

Cyanobacteria are unicellular prokaryotic algae that perform oxygenic photosynthesis, similar to plants. The cells harbor thylakoid membranes composed of lipids related to those of chloroplasts in plants to accommodate the complexes of photosynthesis. The occurrence of storage lipids, including triacylglycerol or wax esters, which are found in plants, animals, and some bacteria, nevertheless remained unclear in cyanobacteria. We show here that the cyanobacterium Synechocystis sp. PCC6803 accumulates both triacylglycerol and wax esters (fatty acid phytyl esters). Phytyl esters accumulate in higher levels under abiotic stress conditions. The analysis of an insertional mutant revealed that the acyltransferase slr2103, with sequence similarity to plant esterase/lipase/thioesterase (ELT) proteins, is essential for triacylglycerol and phytyl ester synthesis in Synechocystis The recombinant slr2103 enzyme showed acyltransferase activity with phytol and diacylglycerol, thus producing phytyl esters and triacylglycerol. Acyl-CoA thioesters were the preferred acyl donors, while acyl-ACP (acyl carrier protein), free fatty acids, or galactolipid-bound fatty acids were poor substrates. The slr2103 protein sequence is unrelated to acyltransferases from bacteria (AtfA) or plants (DGAT1, DGAT2, PDAT), and therefore establishes an independent group of bacterial acyltransferases involved in triacylglycerol and wax ester synthesis. The identification of the gene slr2103 responsible for triacylglycerol synthesis in cyanobacteria opens the possibility of using prokaryotic photosynthetic cells in biotechnological applications.


Assuntos
Proteínas de Bactérias/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Ésteres/metabolismo , Synechocystis/enzimologia , Triglicerídeos/biossíntese , Proteínas de Bactérias/genética , Diacilglicerol O-Aciltransferase/genética , Técnicas de Inativação de Genes , Fitol/metabolismo , Synechocystis/genética , Ceras/metabolismo
16.
Plant Dis ; 107(10): 3106-3112, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37102725

RESUMO

Sunn hemp (Crotalaria juncea L.) cultivar Tropic Sun plants, stunted and displaying mottle and mosaic symptoms on foliage, were observed at a seed farm in Maui County, Hawaii. Lateral flow assays indicated the presence of either tobacco mosaic virus or a serologically related virus. High-throughput sequencing results coupled with real-time PCR experiments recovered the 6,455-nucleotide genome of a virus with an organization typical of tobamoviruses. Nucleotide and amino acid sequence comparisons and phylogenetic analyses indicated that this virus was most closely related to sunn-hemp mosaic virus but represents a distinct species. Sunn-hemp mottle virus (SHMoV) is being proposed as the common name of this virus. Transmission electron microscopy of virus extracts purified from symptomatic leaves revealed rod-shaped particles approximately 320 by 22 nm in size. In inoculation studies, the experimental host range of SHMoV appeared limited to members of the plant families Fabaceae and Solanaceae. Greenhouse experiments demonstrated plant-to-plant transmission of SHMoV that increased with ambient wind speed. Seeds from SHMoV-infected Tropic Sun were collected and were either surface disinfested or directly planted. A total of 924 seedlings germinated; 2 were positive for the virus, resulting in a seed transmission rate of 0.2%. Both infected plants came from the surface disinfestation treatment, suggesting that the virus might be unaffected by the treatment.


Assuntos
Cannabis , Crotalaria , Tobamovirus , Crotalaria/química , Havaí , Tobamovirus/genética , Filogenia , Nucleotídeos
17.
Plant Dis ; 107(4): 1022-1026, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36167515

RESUMO

Malabar spinach plants (Basella alba, Basellaceae) with leaves exhibiting symptoms of mosaic, rugosity, and malformation were found in a community garden on Oahu, HI in 2018. Preliminary studies using enzyme-linked immunosorbent assay and reverse-transcription (RT)-PCR identified Basella rugose mosaic virus (BaRMV) in symptomatic plants. However, nucleotide sequence analysis of RT-PCR amplicons indicated that additional potyviruses were also present in the symptomatic Malabar spinach. High-throughput sequencing (HTS) analysis was conducted on ribosomal RNA-depleted composite RNA samples of potyvirus-positive plants from three locations. Assembled contigs shared sequences similar to BaRMV, chilli veinal mottle virus (ChiVMV), Alternanthera mosaic virus (AltMV), Basella alba endornavirus (BaEV), broad bean wilt virus 2 (BBWV2), and Iresine viroid 1. Virus- and viroid-specific primers were designed based on HTS sequencing results and used in RT-PCR and Sanger sequencing to confirm the presence of these viruses and the viroid. We tested 63 additional samples from six community gardens for a survey of viruses in Malabar spinach and found that 21 of them were positive for BaRMV, 57 for ChiVMV, 21 for AltMV, 19 for BaEV, and 14 for BBWV2. This is the first characterization of the virome from B. alba.


Assuntos
Potyvirus , Viroides , Havaí , Potyvirus/genética , Primers do DNA , Ensaio de Imunoadsorção Enzimática
18.
Plant Cell ; 31(7): 1430-1445, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023840

RESUMO

Chloroplasts fuel plant development and growth by converting solar energy into chemical energy. They mature from proplastids through the concerted action of genes in both the organellar and the nuclear genome. Defects in such genes impair chloroplast development and may lead to pigment-deficient seedlings or seedlings with variegated leaves. Such mutants are instrumental as tools for dissecting genetic factors underlying the mechanisms involved in chloroplast biogenesis. Characterization of the green-white variegated albostrians mutant of barley (Hordeum vulgare) has greatly broadened the field of chloroplast biology, including the discovery of retrograde signaling. Here, we report identification of the ALBOSTRIANS gene HvAST (also known as Hordeum vulgare CCT Motif Family gene 7, HvCMF7) by positional cloning as well as its functional validation based on independently induced mutants by Targeting Induced Local Lesions in Genomes (TILLING) and RNA-guided clustered regularly interspaced short palindromic repeats-associated protein 9 endonuclease-mediated gene editing. The phenotypes of the independent HvAST mutants imply residual activity of HvCMF7 in the original albostrians allele conferring an imperfect penetrance of the variegated phenotype even at homozygous state of the mutation. HvCMF7 is a homolog of the Arabidopsis (Arabidopsis thaliana) CONSTANS, CO-like, and TOC1 (CCT) Motif transcription factor gene CHLOROPLAST IMPORT APPARATUS2, which was reported to be involved in the expression of nuclear genes essential for chloroplast biogenesis. Notably, in barley we localized HvCMF7 to the chloroplast, without any clear evidence for nuclear localization.


Assuntos
Cloroplastos/metabolismo , Genes de Plantas , Hordeum/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Cloroplastos/ultraestrutura , Mapeamento Cromossômico , Proteínas de Fluorescência Verde/metabolismo , Hordeum/ultraestrutura , Mutagênese Sítio-Dirigida , Mutação/genética , Folhas de Planta/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo
19.
Arch Virol ; 167(12): 2801-2804, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269415

RESUMO

The complete genome sequence of pineapple secovirus B (PSV-B), a new virus infecting pineapple (Ananas comosus) on the island of Oahu, Hawaii, was determined by high-throughput sequencing (HTS). The genome comprises two RNAs that are 5,956 and 3,808 nt long, excluding the 3'-end poly-A tails, both coding for a single large polyprotein. The RNA1 polyprotein contains five conserved domains associated with replication, while the RNA2 polyprotein is cleaved into the movement protein and coat protein. PSV-B is representative of a new species in the subgenus Cholivirus (genus Sadwavirus; family Secoviridae), as the level of amino acid sequence identity to recognized members of this subgenus in the Pro-Pol and coat protein regions is below currently valid species demarcation thresholds.


Assuntos
Ananas , Secoviridae , RNA Viral/genética , RNA Viral/metabolismo , Filogenia , Secoviridae/genética , Genoma Viral , Poliproteínas/genética
20.
Virus Genes ; 58(4): 367-371, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35426563

RESUMO

The complete genome sequences of two carlaviruses were determined by high-throughput sequencing of RNA extracted from ringspot and mosaic, disease symptoms on leaves of spider lily plants (Crinum asiaticum, family Amaryllidaceae) growing as landscape plants in Hawaii. One, named Nerine latent virus (NeLV)-Hawaii with a genome of 8281 nucleotide exhibited the highest nucleotide identity and amino acid similarity of 95.5% and 96.0%, respectively, to the genome sequence of an isolate of NeLV from Narcissus sp. in Australia (JQ395044). The second, named Hippeastrum latent virus (HiLV)-Hawaii with a genome of 8497 nucleotides exhibited the highest nucleotide identity and amino acid similarity, 84.3% and 88.7%, respectively, to the sequence of a previously uncharacterized HiLV isolate from a potted flowering plant, Amaryllis (Hippeastrum hybridum Hort) in Taiwan (DQ098905). The amino acid sequence similarities of replicase (Rep) and coat protein (CP) between HiLV-Hawaii and NeLV-Hawaii were 44.8% and 38.4%, respectively. Results of viral protein Rep and CP amino acid sequence comparisons from various carlaviruses provide evidence that HiLV and NeLV, previously classified as synonymous viruses are in fact unique viruses. This is the first report for the complete sequence, organization, and phylogenetic characterization of HiLV and the first detection of HiLV both in C. asiaticum and in the USA.


Assuntos
Amaryllidaceae , Carlavirus , Amaryllidaceae/genética , Aminoácidos/genética , Carlavirus/genética , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Nucleotídeos , Filogenia , Doenças das Plantas , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA