Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 30(9): 14897-14909, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473223

RESUMO

Cylindrical vector (CV) beams have nonuniform polarization vector distribution with a singularity line directed along the optical axis. In this paper, we propose a method to synthesize transversely oriented cylindrically polarized optical fields in the focal region with a singularity line perpendicular to the optical axis. The scheme is based on the time-reversal method, the vectorial diffraction theory, and the 4Pi optical configuration. Both transversely oriented radially polarized and azimuthally polarized optical fields are demonstrated. The superposition of transverse cylindrically polarized optical fields leads to a peculiar distribution carrying controllable transverse spin angular momentum (SAM) and transverse orbital angular momentum (OAM) that may find applications in optical tweezing, light-matter interaction, and unidirectional beam propagation excitation.

2.
Opt Lett ; 47(17): 4568-4571, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048706

RESUMO

Optical vortex fields with a tilted phase singularity line are associated with a tilted orbital angular momentum (OAM). In this Letter, we propose a method to generate optical vortex fields with arbitrary OAM orientation based on the time-reversal method, vectorial diffraction theory, and a 4Pi optical configuration. The ability to control the 3D OAM orientation may find applications in optical tweezing, light-matter interaction, and spin-orbital coupling.

3.
Opt Express ; 29(16): 25535-25542, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614883

RESUMO

We report a time-reversal method based on the Richards-Wolf vectorial diffraction theory to generate a prescribed polarization topology on a defined trajectory within areas of relatively high intensity. An example is given to generate transversely oriented optical Möbius strips that wander around an axis perpendicular to the beam propagation direction. A number of sets of dipole antennae are purposefully positioned on a defined trajectory in the y = 0 plane and the radiation fields are collected by one high-NA objective lens. By sending the complex conjugate of the radiation fields in a time-reversed manner, the focal fields are calculated and the optical polarization topology on the trajectory can be tailored to form prescribed Möbius strips. The ability to control optical polarization topologies may find applications in nanofabrication, quantum communication, and light-matter interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA