Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32690644

RESUMO

Posaconazole (PCZ) is a clinically approved drug used predominantly for prophylaxis and salvage therapy of fungal infections. Here, we report its previously undescribed anti-human cytomegalovirus (HCMV) activity. By using antiviral assays, we demonstrated that PCZ, along with other azolic antifungals, has a broad anti-HCMV activity, being active against different strains, including low-passage-number clinical isolates and strains resistant to viral DNA polymerase inhibitors. Using a pharmacological approach, we identified the inhibition of human cytochrome P450 51 (hCYP51), or lanosterol 14α demethylase, a cellular target of posaconazole in infected cells, as a mechanism of anti-HCMV activity of the drug. Indeed, hCYP51 expression was stimulated upon HCMV infection, and the inhibition of its enzymatic activity by either the lanosterol analog VFV {(R)-N-(1-(3,4'-difluoro-[1,1'-biphenyl]-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide} or PCZ decreased HCMV yield and infectivity of released virus particles. Importantly, we observed that the activity of the first-line anti-HCMV drug ganciclovir was boosted tenfold by PCZ and that ganciclovir (GCV) and PCZ act synergistically in inhibiting HCMV replication. Taken together, these findings suggest that this clinically approved drug deserves further investigation in the development of host-directed antiviral strategies as a candidate anti-HCMV drug with a dual antimicrobial effect.


Assuntos
Infecções por Citomegalovirus , Preparações Farmacêuticas , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Citomegalovirus , Infecções por Citomegalovirus/tratamento farmacológico , Ganciclovir/farmacologia , Ganciclovir/uso terapêutico , Humanos , Triazóis , Replicação Viral
2.
Cell Mol Life Sci ; 71(19): 3659-83, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24699705

RESUMO

Influenza viruses are major human pathogens responsible for respiratory diseases affecting millions of people worldwide and characterized by high morbidity and significant mortality. Influenza infections can be controlled by vaccination and antiviral drugs. However, vaccines need annual updating and give limited protection. Only two classes of drugs are currently approved for the treatment of influenza: M2 ion channel blockers and neuraminidase inhibitors. However, they are often associated with limited efficacy and adverse side effects. In addition, the currently available drugs suffer from rapid and extensive emergence of drug resistance. All this highlights the urgent need for developing new antiviral strategies with novel mechanisms of action and with reduced drug resistance potential. Several new classes of antiviral agents targeting viral replication mechanisms or cellular proteins/processes are under development. This review gives an overview of novel strategies targeting the virus and/or the host cell for counteracting influenza virus infection.


Assuntos
Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Anticorpos Neutralizantes/imunologia , Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Hemaglutininas/imunologia , Hemaglutininas/metabolismo , Humanos , Influenza Humana/virologia , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/metabolismo , Proteínas do Core Viral/antagonistas & inibidores , Proteínas do Core Viral/metabolismo , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 109(16): 6247-52, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22474359

RESUMO

Influenza viruses are the cause of yearly epidemics and occasional pandemics that represent a significant challenge to public health. Current control strategies are imperfect and there is an unmet need for new antiviral therapies. Here, we report the identification of small molecule compounds able to effectively and specifically inhibit growth of influenza A and B viruses in cultured cells through targeting an assembly interface of the viral RNA-dependent RNA polymerase. Using an existing crystal structure of the primary protein-protein interface between the PB1 and PA subunits of the influenza A virus polymerase, we conducted an in silico screen to identify potential small molecule inhibitors. Selected compounds were then screened for their ability to inhibit the interaction between PB1 and PA in vitro using an ELISA-based assay and in cells, to inhibit nuclear import of a binary PB1-PA complex as well as transcription by the full viral ribonucleoprotein complex. Two compounds emerged as effective inhibitors with IC(50) values in the low micromolar range and negligible cytotoxicity. Of these, one compound also acted as a potent replication inhibitor of a variety of influenza A virus strains in Madin-Darby canine kidney (MDCK) cells, including H3N2 and H1N1 seasonal and 2009 pandemic strains. Importantly, this included an oseltamivir-resistant isolate. Furthermore, potent inhibition of influenza B viruses but not other RNA or DNA viruses was seen. Overall, these compounds provide a foundation for the development of a new generation of therapeutic agents exhibiting high specificity to influenza A and B viruses.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , RNA Polimerase Dependente de RNA/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Farmacorresistência Viral , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Vírus da Influenza B/genética , Vírus da Influenza B/metabolismo , Concentração Inibidora 50 , Microscopia Confocal , Modelos Moleculares , Oseltamivir/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase Dependente de RNA/química , Células Vero
4.
Antimicrob Agents Chemother ; 58(11): 6615-26, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25155603

RESUMO

The human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is a multifunctional factor essential for viral replication. IE2 modulates both viral and host gene expression, deregulates cell cycle progression, acts as an immunomodulator, and antagonizes cellular antiviral responses. Based on these facts, IE2 has been proposed as an important target for the development of innovative antiviral approaches. We previously identified the 6-aminoquinolone WC5 as a promising inhibitor of HCMV replication, and here, we report the dissection of its mechanism of action against the viral IE2 protein. Using glutathione S-transferase (GST) pulldown assays, mutagenesis, cell-based assays, and electrophoretic mobility shift assays, we demonstrated that WC5 does not interfere with IE2 dimerization, its interaction with TATA-binding protein (TBP), and the expression of a set of cellular genes that are stimulated by IE2. On the contrary, WC5 targets the regulatory activity exerted by IE2 on different responsive viral promoters. Indeed, WC5 blocked the IE2-dependent negative regulation of the major immediate-early promoter by preventing IE2 binding to the crs element. Moreover, WC5 reduced the IE2-dependent transactivation of a series of indicator constructs driven by different portions of the early UL54 gene promoter, and it also inhibited the transactivation of the murine CMV early E1 promoter by the IE3 protein, the murine cytomegalovirus (MCMV) IE2 homolog. In conclusion, our results indicate that the overall anti-HCMV activity of WC5 depends on its ability to specifically interfere with the IE2-dependent regulation of viral promoters. Importantly, our results suggest that this mechanism is conserved in murine CMV, thus paving the way for further preclinical evaluation in an animal model.


Assuntos
Aminoquinolinas/farmacologia , Antivirais/farmacologia , Citomegalovirus/crescimento & desenvolvimento , Proteínas Imediatamente Precoces/antagonistas & inibidores , Quinolonas/farmacologia , Replicação Viral/efeitos dos fármacos , Antígenos Virais , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Ciclina E/genética , Citomegalovirus/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Proteínas Virais/genética
5.
Antiviral Res ; 223: 105816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286212

RESUMO

Human cytomegalovirus (HCMV) is the viral leading cause of congenital defects in newborns worldwide. Many aspects of congenital CMV (cCMV) infection, which currently lacks a specific treatment, as well as the main determinants of neuropathogenesis in the developing brain during HCMV infection are unclear. In this study, we modeled HCMV infection at different stages of neural development. Moreover, we evaluated the effects of both approved and investigational anti-HCMV drugs on viral replication and gene expression in two different neural progenitor cell lines, i.e., human embryonic stem cells-derived neural stem cells (NSCs) and fetus-derived neuroepithelial stem (NES) cells. Ganciclovir, letermovir, nitazoxanide, and the ozonide OZ418 reduced viral DNA synthesis and the production of infectious virus in both lines of neural progenitors. HCMV infection dysregulated the expression of genes that either are markers of neural progenitors, such as SOX2, NESTIN, PAX-6, or play a role in neurogenesis, such as Doublecortin. Treatment with antiviral drugs had different effects on HCMV-induced dysregulation of the genes under investigation. This study contributes to the understanding of the molecular mechanisms of cCMV neuropathogenesis and paves the way for further consideration of anti-HCMV drugs as candidate therapeutic agents for the amelioration of cCMV-associated neurological manifestations.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Recém-Nascido , Humanos , Infecções por Citomegalovirus/tratamento farmacológico , Encéfalo , Drogas em Investigação , Células-Tronco , Antivirais/farmacologia
6.
Eur J Med Chem ; 268: 116202, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394929

RESUMO

To date, Proteolysis Targeting Chimera (PROTAC) technology has been successfully applied to mediate proteasomal-induced degradation of several pharmaceutical targets mainly related to oncology, immune disorders, and neurodegenerative diseases. On the other hand, its exploitation in the field of antiviral drug discovery is still in its infancy. Recently, we described two indomethacin (INM)-based PROTACs displaying broad-spectrum antiviral activity against coronaviruses. Here, we report the design, synthesis, and characterization of a novel series of INM-based PROTACs that recruit either Von-Hippel Lindau (VHL) or cereblon (CRBN) E3 ligases. The panel of INM-based PROTACs was also enlarged by varying the linker moiety. The antiviral activity resulted very susceptible to this modification, particularly for PROTACs hijacking VHL as E3 ligase, with one piperazine-based compound (PROTAC 6) showing potent anti-SARS-CoV-2 activity in infected human lung cells. Interestingly, degradation assays in both uninfected and virus-infected cells with the most promising PROTACs emerged so far (PROTACs 5 and 6) demonstrated that INM-PROTACs do not degrade human PGES-2 protein, as initially hypothesized, but induce the concentration-dependent degradation of SARS-CoV-2 main protease (Mpro) both in Mpro-transfected and in SARS-CoV-2-infected cells. Importantly, thanks to the target degradation, INM-PROTACs exhibited a considerable enhancement in antiviral activity with respect to indomethacin, with EC50 values in the low-micromolar/nanomolar range. Finally, kinetic solubility as well as metabolic and chemical stability were measured for PROTACs 5 and 6. Altogether, the identification of INM-based PROTACs as the first class of SARS-CoV-2 Mpro degraders demonstrating activity also in SARS-CoV-2-infected cells represents a significant advance in the development of effective, broad-spectrum anti-coronavirus strategies.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Quimera de Direcionamento de Proteólise , Humanos , Proteólise , SARS-CoV-2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Antivirais/farmacologia
7.
Cancer Lett ; 571: 216331, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532093

RESUMO

Human papillomavirus (HPV)-induced cancers still represent a major health issue for worldwide population and lack specific therapeutic regimens. Despite substantial advancements in anti-HPV vaccination, the incidence of HPV-related cancers remains high, thus there is an urgent need for specific anti-HPV drugs. The HPV E7 oncoprotein is a major driver of carcinogenesis that acts by inducing the degradation of several host factors. A target is represented by the cellular phosphatase PTPN14 and its E7-mediated degradation was shown to be crucial in HPV oncogenesis. Here, by exploiting the crystal structure of E7 bound to PTPN14, we performed an in silico screening of small-molecule compounds targeting the C-terminal CR3 domain of E7 involved in the interaction with PTPN14. We discovered a compound able to inhibit the E7/PTPN14 interaction in vitro and to rescue PTPN14 levels in cells, leading to a reduction in viability, proliferation, migration, and cancer-stem cell potential of HPV-positive cervical cancer cells. Mechanistically, as a consequence of PTPN14 rescue, treatment of cancer cells with this compound altered the Yes-associated protein (YAP) nuclear-cytoplasmic shuttling and downstream signaling. Notably, this compound was active against cervical cancer cells transformed by different high-risk (HR)-HPV genotypes indicating a potential broad-spectrum activity. Overall, our study reports the first-in-class inhibitor of E7/PTPN14 interaction and provides the proof-of-principle that pharmacological inhibition of this interaction by small-molecule compounds could be a feasible therapeutic strategy for the development of novel antitumoral drugs specific for HPV-associated cancers.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Papillomavirus Humano , Proteínas E7 de Papillomavirus/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Infecções por Papillomavirus/tratamento farmacológico , Proteínas Oncogênicas Virais/metabolismo , Proteínas Tirosina Fosfatases não Receptoras
8.
mBio ; 14(1): e0309722, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36622141

RESUMO

Every year, dengue virus (DENV) causes one hundred million infections worldwide that can result in dengue disease and severe dengue. Two other mosquito-borne flaviviruses, i.e., Zika virus (ZIKV) and West Nile virus (WNV), are responsible of prolonged outbreaks and are associated with severe neurological diseases, congenital defects, and eventually death. These three viruses, despite their importance for global public health, still lack specific drug treatments. Here, we describe the structure-guided discovery of small molecules with pan-flavivirus antiviral potential by a virtual screening of ~1 million structures targeting the NS3-NS5 interaction surface of different flaviviruses. Two molecules inhibited the interaction between DENV NS3 and NS5 in vitro and the replication of all DENV serotypes as well as ZIKV and WNV and exhibited low propensity to select resistant viruses. Remarkably, one molecule demonstrated efficacy in a mouse model of dengue by reducing peak viremia, viral load in target organs, and associated tissue pathology. This study provides the proof of concept that targeting the flaviviral NS3-NS5 interaction is an effective therapeutic strategy able to reduce virus replication in vivo and discloses new chemical scaffolds that could be further developed, thus providing a significant milestone in the development of much awaited broad-spectrum antiflaviviral drugs. IMPORTANCE More than one-third of the human population is at risk of infection by different mosquito-borne flaviviruses. Despite this, no specific antiviral drug is currently available. In this work, using a computational approach based on molecular dynamics simulation and virtual screening of ~1 million small-molecule structures, we identified a compound that targets the interaction between the two sole flaviviral enzymes, i.e., NS3 and NS5. This compound demonstrated pan-serotype anti-DENV activity and pan-flavivirus potential in infected cells, low propensity to select viral resistant mutant viruses, and efficacy in a mouse model of dengue. Broad-spectrum antivirals are much awaited, and this work represents a significant advance toward the development of therapeutic molecules with extended antiflavivirus potential that act by an innovative mechanism and could be used alone or in combination with other antivirals.


Assuntos
Dengue , Flavivirus , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Dengue/tratamento farmacológico , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química
9.
J Med Chem ; 66(23): 16426-16440, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37992202

RESUMO

The ongoing transmission of SARS-CoV-2 necessitates the development of additional potent antiviral agents capable of combating the current highly infectious variants and future coronaviruses. Here, we present the discovery of potent nonpeptide main protease (Mpro) inhibitors with prominent antiviral activity and improved pharmacokinetic properties. Three series of 1,2,4-trisubstituted piperazine derivatives were designed and synthesized, and the optimal GC-78-HCl demonstrated high enzyme-inhibitory potency (IC50 = 0.19 µM) and exhibited excellent antiviral activity (EC50 = 0.40 µM), reaching the same level as Nirmatrelvir (EC50 = 0.38 µM). Additionally, GC-78-HCl displayed potent antiviral activities against various SARS-CoV-2 variants as well as HCoV-OC43 and HCoV-229E, indicating its potential broad-spectrum anticoronaviral activity. Notably, the pharmacokinetic properties of GC-78-HCl were somewhat enhanced compared to those of the lead compound. Furthermore, the cocrystal and molecular docking elucidated the mechanism of action. In conclusion, we discovered a novel nonpeptidic Mpro inhibitor with promising antiviral activity and a favorable pharmacokinetic profile.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Antivirais/farmacologia , Antivirais/química , Piperazinas/farmacologia
10.
Antimicrob Agents Chemother ; 56(11): 6009-13, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22908168

RESUMO

AL18, an inhibitor of human cytomegalovirus DNA polymerase, was serendipitously found to also block the interaction between the PB1 and PA polymerase subunits of influenza A virus. Furthermore, AL18 effectively inhibited influenza A virus polymerase activity and the overall replication of influenza A and B viruses. A molecular model to explain the binding of AL18 to both cytomegalovirus and influenza targets is proposed. Thus, AL18 represents an interesting lead for the development of new antivirals.


Assuntos
Antraquinonas/farmacologia , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Antraquinonas/química , Antivirais/química , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/enzimologia , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Vírus da Influenza A/enzimologia , Vírus da Influenza B/enzimologia , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Simulação de Acoplamento Molecular , Inibidores da Síntese de Ácido Nucleico , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Transfecção , Proteínas Virais/química , Proteínas Virais/metabolismo
11.
Antiviral Res ; 204: 105350, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688349

RESUMO

Two years after its emergence, SARS-CoV-2 still represents a serious and global threat to human health. Antiviral drug development usually takes a long time and, to increase the chances of success, chemical variability of hit compounds represents a valuable source for the discovery of new antivirals. In this work, we applied a platform of variably oriented virtual screening campaigns to seek for novel chemical scaffolds for SARS-CoV-2 main protease (Mpro) inhibitors. The study on the resulting 30 best hits led to the identification of a series of structurally unrelated Mpro inhibitors. Some of them exhibited antiviral activity in the low micromolar range against SARS-CoV-2 and other human coronaviruses (HCoVs) in different cell lines. Time-of-addition experiments demonstrated an antiviral effect during the viral replication cycle at a time frame consistent with the inhibition of SARS-CoV-2 Mpro activity. As a proof-of-concept, to validate the pharmaceutical potential of the selected hits against SARS-CoV-2, we rationally optimized one of the hit compounds and obtained two potent SARS-CoV-2 inhibitors with increased activity against Mpro both in vitro and in a cellular context, as well as against SARS-CoV-2 replication in infected cells. This study significantly contributes to the expansion of the chemical variability of SARS-CoV-2 Mpro inhibitors and provides new scaffolds to be exploited for pan-coronavirus antiviral drug development.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Inibidores de Proteases , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia
12.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008354

RESUMO

High-risk human papillomaviruses (HR-HPV) are the etiological agents of almost all cervical cancer cases and a high percentage of head-and-neck malignancies. Although HPV vaccination can reduce cancer incidence, its coverage significantly differs among countries, and, therefore, in the next decades HPV-related tumors will not likely be eradicated worldwide. Thus, the need of specific treatments persists, since no anti-HPV drug is yet available. We recently discovered a small molecule (Cpd12) able to inhibit the E6-mediated degradation of p53 through the disruption of E6/p53 binding in HPV16- and HPV18-positive cervical cancer cells. By employing several biochemical and cellular assays, here we show that Cpd12 is also active against cervical cancer cells transformed by other HR-HPV strains, such as HPV68 and HPV45, and against a HPV16-transformed head-and-neck cancer cell line, suggesting the possibility to employ Cpd12 as a targeted drug against a broad range of HPV-induced cancers. In these cancer cell lines, the antitumoral mechanism of action of Cpd12 involves p53-dependent cell cycle arrest, a senescent response, and inhibition of cancer cell migration. Finally, we show that Cpd12 can strongly synergize with taxanes and topoisomerase inhibitors, encouraging the evaluation of Cpd12 in preclinical studies for the targeted treatment of HPV-related carcinomas.

13.
Viruses ; 13(5)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065234

RESUMO

Human cytomegalovirus (HCMV) is a leading cause of severe diseases in immunocompromised individuals, including AIDS patients and transplant recipients, and in congenitally infected newborns. The utility of available drugs is limited by poor bioavailability, toxicity, and emergence of resistant strains. Therefore, it is crucial to identify new targets for therapeutic intervention. Among the latter, viral protein-protein interactions are becoming increasingly attractive. Since dimerization of HCMV DNA polymerase processivity factor ppUL44 plays an essential role in the viral life cycle, being required for oriLyt-dependent DNA replication, it can be considered a potential therapeutic target. We therefore performed an in silico screening and selected 18 small molecules (SMs) potentially interfering with ppUL44 homodimerization. Antiviral assays using recombinant HCMV TB4-UL83-YFP in the presence of the selected SMs led to the identification of four active compounds. The most active one, B3, also efficiently inhibited HCMV AD169 strain in plaque reduction assays and impaired replication of an AD169-GFP reporter virus and its ganciclovir-resistant counterpart to a similar extent. As assessed by Western blotting experiments, B3 specifically reduced viral gene expression starting from 48 h post infection, consistent with the inhibition of viral DNA synthesis measured by qPCR starting from 72 h post infection. Therefore, our data suggest that inhibition of ppUL44 dimerization could represent a new class of HCMV inhibitors, complementary to those targeting the DNA polymerase catalytic subunit or the viral terminase complex.


Assuntos
Antivirais/química , Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Replicação Viral/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular , Citomegalovirus/genética , Relação Dose-Resposta a Droga , Descoberta de Drogas , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
14.
Antiviral Res ; 189: 105062, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33722615

RESUMO

We recently reported that some clinically approved antifungal drugs are potent inhibitors of human cytomegalovirus (HCMV). Here, we report the broad-spectrum activity against HCMV of isavuconazole (ICZ), a new extended-spectrum triazolic antifungal drug. ICZ inhibited the replication of clinical isolates of HCMV as well as strains resistant to the currently available DNA polymerase inhibitors. The antiviral activity of ICZ against HCMV could be linked to the inhibition of human cytochrome P450 51 (hCYP51), an enzyme whose activity we previously demonstrated to be required for productive HCMV infection. Moreover, time-of-addition studies indicated that ICZ might have additional inhibitory effects during the first phase of HCMV replication. Importantly, ICZ showed synergistic antiviral activity in vitro when administered in combination with different approved anti-HCMV drugs at clinically relevant doses. Together, these results pave the way to possible future clinical studies aimed at evaluating the repurposing potential of ICZ in the treatment of HCMV-associated diseases.


Assuntos
Antivirais/farmacologia , Infecções por Citomegalovirus/tratamento farmacológico , Citomegalovirus/efeitos dos fármacos , Nitrilas/farmacologia , Piridinas/farmacologia , Esterol 14-Desmetilase/efeitos dos fármacos , Triazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Antifúngicos/farmacologia , Linhagem Celular , Infecções por Citomegalovirus/virologia , Reposicionamento de Medicamentos , Farmacorresistência Viral , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos
15.
Eur J Med Chem ; 226: 113814, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534839

RESUMO

Indomethacin (INM), a well-known non-steroidal anti-inflammatory drug, has recently gained attention for its antiviral activity demonstrated in drug repurposing studies against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Although the mechanism of action of INM is not yet fully understood, recent studies have indicated that it acts at an early stage of the coronaviruses (CoVs) replication cycle. In addition, a proteomic study reported that the anti-SARS-CoV-2 activity of INM could be also ascribed to its ability to inhibit human prostaglandin E synthase type 2 (PGES-2), a host protein which interacts with the SARS-CoV-2 NSP7 protein. Although INM does not potently inhibit SARS-CoV-2 replication in infected Vero E6 cells, here we have explored for the first time the application of the Proteolysis Targeting Chimeras (PROTACs) technology in order to develop more potent INM-derived PROTACs with anti-CoV activity. In this study, we report the design, synthesis, and biological evaluation of a series of INM-based PROTACs endowed with antiviral activity against a panel of human CoVs, including different SARS-CoV-2 strains. Two PROTACs showed a strong improvement in antiviral potency compared to INM. Molecular modelling studies support human PGES-2 as a potential target of INM-based antiviral PROTACs, thus paving the way toward the development of host-directed anti-CoVs strategies. To the best of our knowledge, these PROTACs represent the first-in-class INM-based PROTACs with antiviral activity and also the first example of the application of PROTACs to develop pan-coronavirus agents.


Assuntos
Antivirais/farmacologia , COVID-19/virologia , Indometacina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Chlorocebus aethiops , Reposicionamento de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Células Vero , Replicação Viral/efeitos dos fármacos
16.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439242

RESUMO

Human papillomavirus is the most common viral infectious agent responsible for cancer development in humans. High-risk strains are known to induce cancer through the expression of the viral oncogenes E6 and E7, yet we have only a partial understanding of the precise mechanisms of action of these viral proteins. Here we investigated the molecular mechanism through which the oncoprotein E6 alters the Hippo-YAP/TAZ pathway to trigger YAP/TAZ induction in cancer cells. By employing E6 overexpression systems combined with protein-protein interaction studies and loss-of-function approaches, we discovered that the E6-mediated targeting of hScrib, which supports YAP/TAZ upregulation, intimately requires E6 homodimerization. We show that the self-association of E6, previously reported only in vitro, takes place in the cytoplasm and, as a dimer, E6 targets the fraction of hScrib at the cell cortex for proteasomal degradation. Thus, E6 homodimerization emerges as an important event in the mechanism of E6-mediated hScrib targeting to sustain downstream YAP/TAZ upregulation, unraveling for the first time the key role of E6 homodimerization in the context of its transforming functions and thus paving the way for the possible development of E6 dimerization inhibitors.

17.
Antimicrob Agents Chemother ; 54(11): 4561-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20713657

RESUMO

To date, there are few drugs licensed for the treatment of human cytomegalovirus (HCMV) infections, most of which target the viral DNA polymerase and suffer from many drawbacks. Thus, there is still a strong need for new anti-HCMV compounds with novel mechanisms of action. In this study, we investigated the anti-HCMV activity of chemically sulfated derivatives of Escherichia coli K5 capsular polysaccharide. These compounds are structurally related to cellular heparan sulfate and have been previously shown to be effective against some enveloped and nonenveloped viruses. We demonstrated that two derivatives, i.e., K5-N,OS(H) and K5-N,OS(L), are able to prevent cell infection by different strains of HCMV at concentrations in the nanomolar range while having no significant cytotoxicity. Studies performed to elucidate the mechanism of action of their anti-HCMV activity revealed that these compounds do not interact with either the host cell or the viral particle but need a virus-cell interaction to exert antiviral effects. Furthermore, these K5 derivatives were able to inhibit the attachment step of HCMV infection, as well as the viral cell-to-cell spread. Since the mode of inhibition of these compounds appears to differ from that of the available anti-HCMV drugs, sulfated K5 derivatives could represent the basis for the development of a novel class of potent anti-HCMV compounds. Interestingly, our studies highlight that small variations of the K5 derivatives structure can modulate the selectivity and potency of their activities against different viruses, including viruses belonging to the same family.


Assuntos
Antivirais/química , Antivirais/farmacologia , Cápsulas Bacterianas/química , Cápsulas Bacterianas/farmacologia , Citomegalovirus/efeitos dos fármacos , Escherichia coli/química , Sulfatos/química , Animais , Linhagem Celular , Humanos , Camundongos , Células NIH 3T3 , Vírion/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
18.
Antimicrob Agents Chemother ; 54(5): 1930-40, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20194695

RESUMO

WC5 is a 6-aminoquinolone that potently inhibits the replication of human cytomegalovirus (HCMV) but has no activity, or significantly less activity, against other herpesviruses. Here we investigated the nature of its specific anti-HCMV activity. Structure-activity relationship studies on a small series of analogues showed that WC5 possesses the most suitable pattern of substitutions around the quinolone scaffold to give potent and selective anti-HCMV activity. Studies performed to identify the possible target of WC5 indicated that it prevents viral DNA synthesis but does not significantly affect DNA polymerase activity. In yield reduction experiments with different multiplicities of infection, the anti-HCMV activity of WC5 appeared to be highly dependent on the viral inoculum, suggesting that WC5 may act at an initial stage of virus replication. Consistently, time-of-addition and time-of-removal studies demonstrated that WC5 affects a phase of the HCMV replicative cycle that precedes viral DNA synthesis. Experiments to monitor the effects of the compound on virus attachment and entry showed that it does not inhibit either process. Evaluation of viral mRNA and protein expression revealed that WC5 targets an event of the HCMV replicative cycle that follows the transcription and translation of immediate-early genes and precedes those of early and late genes. In cell-based assays to test the effects of WC5 on the transactivating activity of the HCMV immediate-early 2 (IE2) protein, WC5 markedly interfered with IE2-mediated transactivation of viral early promoters. Finally, WC5 combined with ganciclovir in checkerboard experiments exhibited highly synergistic activity. These findings suggest that WC5 deserves further investigation as a candidate anti-HCMV drug with a novel mechanism of action.


Assuntos
Aminoquinolinas/farmacologia , Infecções por Citomegalovirus/tratamento farmacológico , Citomegalovirus/efeitos dos fármacos , Fibroblastos/virologia , Proteínas Imediatamente Precoces/metabolismo , Transativadores/metabolismo , Antivirais/farmacologia , Células Cultivadas , Citomegalovirus/crescimento & desenvolvimento , Infecções por Citomegalovirus/virologia , DNA Polimerase Dirigida por DNA/metabolismo , Sinergismo Farmacológico , Fibroblastos/citologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Transcrição Gênica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
19.
Cancer Lett ; 470: 115-125, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693922

RESUMO

Despite prophylactic vaccination campaigns, human papillomavirus (HPV)-induced cancers still represent a major medical issue for global population, thus specific anti-HPV drugs are needed. Since the ability of HPV E6 oncoprotein to promote p53 degradation is linked to tumor progression, E6 has been proposed as an ideal target for cancer treatment. Using the crystal structure of the E6/E6AP/p53 complex, we performed an in silico screening of small-molecule libraries against a highly conserved alpha-helix in the N-terminal domain of E6 involved in the E6-p53 interaction. We discovered a compound able to inhibit the E6-mediated degradation of p53 through disruption of E6-p53 binding both in vitro and in cells. This compound could restore p53 intracellular levels and transcriptional activity, reduce the viability and proliferation of HPV-positive cancer cells, and block 3D cervospheres formation. Mechanistic studies revealed that the compound anti-tumor activity mainly relies on induction of cell cycle arrest and senescence. Our data demonstrate that the disruption of the direct E6-p53 interaction can be obtained with a small-molecule compound leading to specific antitumoral activity in HPV-positive cancer cells and thus represents a new approach for anti-HPV drug development.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Proteínas Oncogênicas Virais/antagonistas & inibidores , Infecções por Papillomavirus/tratamento farmacológico , Proteínas Repressoras/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Cristalografia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Papillomavirus Humano 16/metabolismo , Papillomavirus Humano 16/patogenicidade , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Neoplasias/patologia , Neoplasias/virologia , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Esferoides Celulares , Relação Estrutura-Atividade
20.
Antimicrob Agents Chemother ; 53(1): 312-5, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19015358

RESUMO

We identified a 6-aminoquinolone compound, WC5, that inhibits human cytomegalovirus (HCMV) replication with a selectivity index of approximately 500. WC5 also showed activity against drug-resistant HCMV strains. In contrast, it did not significantly affect the replication of human herpesvirus 6 and 8 and was approximately 10-fold less active against murine cytomegalovirus. Thus, WC5 may represent a lead for the development of new, potent, and selective anti-HCMV compounds.


Assuntos
Aminoquinolinas/farmacologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/genética , Aminoquinolinas/química , Humanos , Estrutura Molecular , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA