Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Ecol Lett ; 25(10): 2189-2202, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35981221

RESUMO

In light of ongoing climate change, it is increasingly important to know how nutritional requirements of ectotherms are affected by changing temperatures. Here, we analyse the wide thermal response of phosphorus (P) requirements via elemental gross growth efficiencies of Carbon (C) and P, and the Threshold Elemental Ratios in different aquatic invertebrate ectotherms: the freshwater model species Daphnia magna, the marine copepod Acartia tonsa, the marine heterotrophic dinoflagellate Oxyrrhis marina, and larvae of two populations of the marine crab Carcinus maenas. We show that they all share a non-linear cubic thermal response of nutrient requirements. Phosphorus requirements decrease from low to intermediate temperatures, increase at higher temperatures and decrease again when temperature is excessive. This common thermal response of nutrient requirements is of great importance if we aim to understand or even predict how ectotherm communities will react to global warming and nutrient-driven eutrophication.


Assuntos
Mudança Climática , Fósforo , Animais , Carbono , Invertebrados , Temperatura
2.
Glob Chang Biol ; 28(8): 2804-2819, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35068029

RESUMO

Phytoplanktonic organisms are particularly sensitive to environmental change, and, as they represent a direct link between abiotic and biotic compartments within the marine food web, changes in the functional structure of phytoplankton communities can result in profound impacts on ecosystem functioning. Using a trait-based approach, we examined changes in the functional structure of the southern North Sea phytoplankton over the past five decades in relation to environmental conditions. We identified a shift in functional structure between 1998 and 2004 which coincides with a pronounced increase in diatom and decrease in dinoflagellate abundances, and we provide a mechanistic explanation for this taxonomic change. Early in the 2000s, the phytoplankton functional structure shifted from slow growing, autumn blooming, mixotrophic organisms, towards earlier blooming and faster-growing microalgae. Warming and decreasing dissolved phosphorus concentrations were linked to this rapid reorganization of the functional structure. We identified a potential link between this shift and dissolved nutrient concentrations, and we hypothesise that organisms blooming early and displaying high growth rates efficiently take up nutrients which then are no longer available to late bloomers. Moreover, we identified that the above-mentioned functional change may have bottom-up consequences, through a food quality-driven negative influence on copepod abundances. Overall, our study highlights that, by altering the phytoplankton functional composition, global and regional changes may have profound long-term impacts on coastal ecosystems, impacting both food-web structure and biogeochemical cycles.


Assuntos
Diatomáceas , Dinoflagellida , Ecossistema , Eutrofização , Fitoplâncton
3.
Ecol Lett ; 19(1): 45-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26567776

RESUMO

Herbivory is more prevalent in the tropics than at higher latitudes. If differences in ambient temperature are the direct cause for this phenomenon, then the same pattern should be visible in a seasonal gradient, as well as in experiments manipulating temperature. Using (15)N stable isotope analyses of natural populations of the copepod Temora longicornis we indeed observed seasonal differences in the trophic level of the copepod and a decrease in trophic level with increasing temperature. In a grazing experiment, with a mixed diet of the cryptophyte Rhodomonas salina and the heterotrophic dinoflagellate Oxyrrhis marina, T. longicornis preferred the cryptophyte at higher temperatures, whereas at lower temperatures it preferred the non-autotrophic prey. We explain these results by the higher relative carbon content of primary producers compared to consumers, in combination with the higher demand for metabolic carbon at higher temperatures. Thus, currently increasing temperatures may cause changes in dietary preferences of many consumers.


Assuntos
Copépodes/fisiologia , Criptófitas/química , Dinoflagellida/química , Cadeia Alimentar , Preferências Alimentares , Temperatura Alta , Animais
4.
Ecol Lett ; 19(11): 1386-1388, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27611847

RESUMO

The study of environmental impact on feeding preferences of omnivores is a rapidly growing field. Here, we show that the criticism put forward in a comment on our original study is largely unfounded.


Assuntos
Copépodes/fisiologia , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Temperatura Alta , Animais , Mudança Climática , Preferências Alimentares
5.
Glob Chang Biol ; 22(1): 164-79, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25953197

RESUMO

Increased reactive nitrogen (Nr ) deposition has raised the amount of N available to organisms and has greatly altered the transfer of energy through food webs, with major consequences for trophic dynamics. The aim of this review was to: (i) clarify the direct and indirect effects of Nr deposition on forest and lake food webs in N-limited biomes, (ii) compare and contrast how aquatic and terrestrial systems respond to increased Nr deposition, and (iii) identify how the nutrient pathways within and between ecosystems change in response to Nr deposition. We present that Nr deposition releases primary producers from N limitation in both forest and lake ecosystems and raises plants' N content which in turn benefits herbivores with high N requirements. Such trophic effects are coupled with a general decrease in biodiversity caused by different N-use efficiencies; slow-growing species with low rates of N turnover are replaced by fast-growing species with high rates of N turnover. In contrast, Nr deposition diminishes below-ground production in forests, due to a range of mechanisms that reduce microbial biomass, and decreases lake benthic productivity by switching herbivore growth from N to phosphorus (P) limitation, and by intensifying P limitation of benthic fish. The flow of nutrients between ecosystems is expected to change with increasing Nr deposition. Due to higher litter production and more intense precipitation, more terrestrial matter will enter lakes. This will benefit bacteria and will in turn boost the microbial food web. Additionally, Nr deposition promotes emergent insects, which subsidize the terrestrial food web as prey for insectivores or by dying and decomposing on land. So far, most studies have examined Nr -deposition effects on the food web base, whereas our review highlights that changes at the base of food webs substantially impact higher trophic levels and therefore food web structure and functioning.


Assuntos
Cadeia Alimentar , Florestas , Lagos , Nitrogênio , Animais , Biodiversidade , Ecossistema , Fósforo/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo
6.
Sci Total Environ ; 921: 171272, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408676

RESUMO

Marine organisms are currently, and will continue to be, exposed to the simultaneous effects of multiple environmental changes. Plankton organisms form the base of pelagic marine food webs and are particularly sensitive to ecosystem changes. Thus, warming, acidification, and changes in dissolved nutrient concentrations have the potential to alter these assemblages, with consequences for the entire ecosystem. Despite the growing number of studies addressing the potential influence of multiple drivers on plankton, global change may also cause less obvious alterations to the networks of interactions among species. Using inverse analyses applied to data collected during a mesocosm experiment, we aimed to compare the ecological functioning of coastal plankton assemblages and the interactions within their food web under different global change scenarios. The experimental treatments were based on the RCP 6.0 and 8.5 scenarios developed by the IPCC, which were extended (ERCP) to integrate the future predicted changes in coastal water nutrient concentrations. Overall, we identified that the functioning of the plankton food web was rather similar in the Ambient and ERCP 6.0 scenarios, but substantially altered in the ERCP 8.5 scenario. Using food web modelling and ecological network analysis, we identified that global change strengthens the microbial loop, with a decrease of energy transfer efficiency to higher trophic levels. Microzooplankton responded as well by an increased degree of herbivory in their diet and represented, compared to mesozooplankton, by far the main top-down pressure on primary producers. We also observed that the organisation of the food web and its capacity to recycle carbon was higher under the ERCP 8.5 scenario, but flow diversity and carbon path length were significantly reduced, illustrating an increased food web stability at the expense of diversity. Here, we provide evidence that if global change goes beyond the ERCP 6.0 scenario, coastal ecosystem functioning will be subjected to dramatic changes.


Assuntos
Cadeia Alimentar , Plâncton , Animais , Ecossistema , Organismos Aquáticos , Carbono , Fitoplâncton , Zooplâncton
7.
Conserv Physiol ; 11(1): coad072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711582

RESUMO

Global change puts coastal systems under pressure, affecting the ecology and physiology of marine organisms. In particular, fish larvae are sensitive to environmental conditions, and their fitness is an important determinant of fish stock recruitment and fluctuations. To assess the combined effects of warming, acidification and change in food quality, herring larvae were reared in a control scenario (11°C*pH 8.0) and a scenario predicted for 2100 (14°C*pH 7.6) crossed with two feeding treatments (enriched in phosphorus and docosahexaenoic acid or not). The experiment lasted from hatching to the beginning of the post-flexion stage (i.e. all fins present) corresponding to 47 days post-hatch (dph) at 14°C and 60 dph at 11°C. Length and stage development were monitored throughout the experiment and the expression of genes involved in growth, metabolic pathways and stress responses were analysed for stage 3 larvae (flexion of the notochord). Although the growth rate was unaffected by acidification and temperature changes, the development was accelerated in the 2100 scenario, where larvae reached the last developmental stage at a smaller size (-8%). We observed no mortality related to treatments and no effect of food quality on the development of herring larvae. However, gene expression analyses revealed that heat shock transcripts expression was higher in the warmer and more acidic treatment. Our findings suggest that the predicted warming and acidification environment are stressful for herring larvae, inducing a decrease in size-at-stage at a precise period of ontogeny. This could either negatively affect survival and recruitment via the extension of the predation window or positively increase the survival by reducing the larval stage duration.

8.
mSystems ; 8(3): e0128722, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37195198

RESUMO

Net growth of microbial populations, that is, changes in abundances over time, can be studied using 16S rRNA fluorescence in situ hybridization (FISH). However, this approach does not differentiate between mortality and cell division rates. We used FISH-based image cytometry in combination with dilution culture experiments to study net growth, cell division, and mortality rates of four bacterial taxa over two distinct phytoplankton blooms: the oligotrophs SAR11 and SAR86, and the copiotrophic phylum Bacteroidetes, and its genus Aurantivirga. Cell volumes, ribosome content, and frequency of dividing cells (FDC) co-varied over time. Among the three, FDC was the most suitable predictor to calculate cell division rates for the selected taxa. The FDC-derived cell division rates for SAR86 of up to 0.8/day and Aurantivirga of up to 1.9/day differed, as expected for oligotrophs and copiotrophs. Surprisingly, SAR11 also reached high cell division rates of up to 1.9/day, even before the onset of phytoplankton blooms. For all four taxonomic groups, the abundance-derived net growth (-0.6 to 0.5/day) was about an order of magnitude lower than the cell division rates. Consequently, mortality rates were comparably high to cell division rates, indicating that about 90% of bacterial production is recycled without apparent time lag within 1 day. Our study shows that determining taxon-specific cell division rates complements omics-based tools and provides unprecedented clues on individual bacterial growth strategies including bottom-up and top-down controls. IMPORTANCE The growth of a microbial population is often calculated from their numerical abundance over time. However, this does not take cell division and mortality rates into account, which are important for deriving ecological processes like bottom-up and top-down control. In this study, we determined growth by numerical abundance and calibrated microscopy-based methods to determine the frequency of dividing cells and subsequently calculate taxon-specific cell division rates in situ. The cell division and mortality rates of two oligotrophic (SAR11 and SAR86) and two copiotrophic (Bacteroidetes and Aurantivirga) taxa during two spring phytoplankton blooms showed a tight coupling for all four taxa throughout the blooms without any temporal offset. Unexpectedly, SAR11 showed high cell division rates days before the bloom while cell abundances remained constant, which is indicative of strong top-down control. Microscopy remains the method of choice to understand ecological processes like top-down and bottom-up control on a cellular level.


Assuntos
Bacteroidetes , Fitoplâncton , Bacteroidetes/genética , Fitoplâncton/genética , RNA Ribossômico 16S/genética , Hibridização in Situ Fluorescente , Controle da População , Água do Mar/microbiologia , Bactérias , Divisão Celular
9.
Microbiome ; 11(1): 77, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069671

RESUMO

BACKGROUND: Blooms of marine microalgae play a pivotal role in global carbon cycling. Such blooms entail successive blooms of specialized clades of planktonic bacteria that collectively remineralize gigatons of algal biomass on a global scale. This biomass is largely composed of distinct polysaccharides, and the microbial decomposition of these polysaccharides is therefore a process of prime importance. RESULTS: In 2020, we sampled a complete biphasic spring bloom in the German Bight over a 90-day period. Bacterioplankton metagenomes from 30 time points allowed reconstruction of 251 metagenome-assembled genomes (MAGs). Corresponding metatranscriptomes highlighted 50 particularly active MAGs of the most abundant clades, including many polysaccharide degraders. Saccharide measurements together with bacterial polysaccharide utilization loci (PUL) expression data identified ß-glucans (diatom laminarin) and α-glucans as the most prominent and actively metabolized dissolved polysaccharide substrates. Both substrates were consumed throughout the bloom, with α-glucan PUL expression peaking at the beginning of the second bloom phase shortly after a peak in flagellate and the nadir in bacterial total cell counts. CONCLUSIONS: We show that the amounts and composition of dissolved polysaccharides, in particular abundant storage polysaccharides, have a pronounced influence on the composition of abundant bacterioplankton members during phytoplankton blooms, some of which compete for similar polysaccharide niches. We hypothesize that besides the release of algal glycans, also recycling of bacterial glycans as a result of increased bacterial cell mortality can have a significant influence on bacterioplankton composition during phytoplankton blooms. Video Abstract.


Assuntos
Eutrofização , Fitoplâncton , Fitoplâncton/genética , Fitoplâncton/metabolismo , Mar do Norte , Plâncton/genética , Polissacarídeos/metabolismo , Bactérias/genética , Bactérias/metabolismo
10.
J Plankton Res ; 44(6): 947-960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36447777

RESUMO

As a result of climate change, an increasing number of extreme weather events can be observed. Heavy precipitation events can increase river discharge which causes an abrupt increase of nutrient-rich freshwater into coastal zones. We investigated the potential consequences of nutrient-rich freshwater pulses on phytoplankton communities from three stations in the North Sea. After incubating the phytoplankton cultures with a gradient of nutrient-rich freshwater, we analyzed changes in community diversity, average cell size, growth rate and elemental stoichiometry. Pulses of nutrient-rich freshwater have caused an increase in the growth rate of the phytoplankton communities at two of the three stations and a decrease in cell size within the taxonomic groups of flagellates and diatoms at all stations, indicating a positive selection in favor of smaller taxa. In addition, we observed a decrease in the molar N:P ratio of the phytoplankton communities. Overall, the response of phytoplankton was highly dependent on the initial community structure at each sampling site. Our study demonstrates that the biomass and functional structure of North Sea phytoplankton communities could be altered by an abrupt increase in river discharge, which could have further consequences for higher trophic levels and short-term food web dynamics in the North Sea.

11.
Commun Biol ; 5(1): 179, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233039

RESUMO

Global change puts coastal marine systems under pressure, affecting community structure and functioning. Here, we conducted a mesocosm experiment with an integrated multiple driver design to assess the impact of future global change scenarios on plankton, a key component of marine food webs. The experimental treatments were based on the RCP 6.0 and 8.5 scenarios developed by the IPCC, which were Extended (ERCP) to integrate the future predicted changing nutrient inputs into coastal waters. We show that simultaneous influence of warming, acidification, and increased N:P ratios alter plankton dynamics, favours smaller phytoplankton species, benefits microzooplankton, and impairs mesozooplankton. We observed that future environmental conditions may lead to the rise of Emiliania huxleyi and demise of Noctiluca scintillans, key species for coastal planktonic food webs. In this study, we identified a tipping point between ERCP 6.0 and ERCP 8.5 scenarios, beyond which alterations of food web structure and dynamics are substantial.


Assuntos
Dinoflagellida , Plâncton , Biomassa , Cadeia Alimentar , Fitoplâncton
12.
PLoS One ; 16(5): e0251213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33961656

RESUMO

Morphological and physiological characteristics of phytoplankton cells are highly sensitive to changes in environmental conditions and, in turn, influence the dynamics of phytoplankton populations and communities. To cope with environmental change, trait variability and phenotypic plasticity may play an important role. Since global change comprises simultaneous changes in abiotic parameters, we assessed the impact of multiple drivers on functional traits of the diatom Thalassiosira (Conticribra) weissflogii by manipulating concurrently temperature, pCO2, and dissolved nitrogen:phosphorus (N:P) ratio. We tested three scenarios: ambient (ambient temperature and atmospheric pCO2; 16 N:P ratio), moderate future scenario (+1.5°C and 800 ppm CO2; 25 N:P ratio), and more severe future scenario (+3°C and 1000 ppm CO2; 25 N:P ratio). We applied flow cytometry to measure on single-cell levels to investigate trait variability and phenotypic plasticity within one strain of diatoms. Growth rates differed significantly between the treatments and were strongly correlated with cell size and cellular chlorophyll a content. We observed a negative correlation of growth rate with chlorophyll a variability among single strain populations and a negative correlation with the phenotypic plasticity of cell size, i.e. when growth rates were higher, the cell size cell-to-cell variability within cultures was lower. Additionally, the phenotypic plasticity in cell size was lower under the global change scenarios. Overall, our study shows that multiple traits are interlinked and driven by growth rate and that this interconnection may partly be shaped by environmental factors.


Assuntos
Clorofila A/análise , Diatomáceas/crescimento & desenvolvimento , Meio Ambiente , Adaptação Fisiológica , Tamanho Celular , Nitrogênio , Fenótipo , Temperatura
13.
Artigo em Inglês | MEDLINE | ID: mdl-19770067

RESUMO

Siboglinids are symbiotic polychete annelids having hemoglobins as essential oxygen- and sulfide-carriers for their endosymbiotic bacteria. We analyzed the structure of the hemoglobins from two species of siboglinids: the monilifera Sclerolinum contortum and the frenulata Oligobrachia webbi (i.e. haakonmosbiensis) from Norwegian cold seeps. Measured by Multi-Angle Laser Light Scattering (MALLS), Sclerolinum shows a 3190+/-50 kDa hexagonal bilayer hemoglobin (HBL-Hb) and a 461+/-46 kDa ring-Hb, just as vestimentifera, whereas Oligobrachia has a 409+/-3.7 kDa ring-Hb only. Electrospray Ionization-Mass Spectrometry (ESI-MS) showed Sclerolinum HBL-Hb composed of seven monomeric globins (15-16 kDa), three disulfide-bonded globin heterodimers and three linkers. The heterodimers always contain globin-b (15814.4+/-1.5 Da). Sclerolinum ring-Hb is composed of globins and dimers with identical masses as its HBL-Hb, but lacks linkers. Oligobrachia ring-Hb has three globin monomers (14-15 kDa) only, with no disulfide-bonded dimers. Comparison of Sclerolinum hemoglobins between Storegga and Haakon Mosby Mud Volcano, using the normalized height of deconvoluted ESI-MS peaks, shows differences in globin monomers abundances that could reflect genetic differences or differential gene expression between distinct seep populations. The discovery of HBL-Hb in Sclerolinum is a new element supporting the hypothesis of monilifera being phylogenetically more closely related to vestimentifera, than to frenulata.


Assuntos
Anelídeos/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Multimerização Proteica , Animais , Anelídeos/química , Luz , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Peso Molecular , Filogenia , Estrutura Quaternária de Proteína , Espalhamento de Radiação , Análise de Sequência de Proteína , Especificidade da Espécie
14.
J Plankton Res ; 42(5): 530-538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32939155

RESUMO

Although consumers may use selective feeding to cope with suboptimal resource quality, little work has examined the mechanisms that underlie selective feeding, the efficiency of this behavior or its influence on consumer growth rate. Furthermore, a consumer's exposure to suboptimal resources may also influence the consumer's behavior and life history, including growth rate. Here, we studied how the availability of P-rich and P-poor phytoplankton influences the growth and behavior of copepod nauplii. We observed that copepod nauplii preferentially feed on P-rich prey. We also found that even relatively short exposure to P-rich phytoplankton yielded higher nauplii growth rates, whereas the presence of P-poor phytoplankton in a mixture impaired growth. Overall, we observed that swimming speed decreased with increasing phytoplankton P-content, which is a behavioral adjustment that may improve utilization of heterogeneously distributed high-quality food in the field. Based on our results, we propose that the optimal prey C: P ratio for copepod nauplii is very narrow, and that deviations from this optimum have severe negative consequences for growth.

15.
PLoS One ; 14(6): e0218015, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31170238

RESUMO

The meroplanktonic larvae of benthic organisms are an important seasonal component of the zooplankton in temperate coastal waters. The larvae of the reef-building polychaete Lanice conchilega contribute up to 15% of the summer zooplankton biomass in the North Sea. Despite their importance for reef maintenance (which positively affects the benthic community), little is known about the trophic ecology of this meroplanktonic larva. Qualitative and quantitative estimates of carbon (C) transfer between trophic levels and of fatty acid (FA)-specific assimilation, biosynthesis, and bioconversion can be obtained by compound-specific stable isotope analysis of FA. The present work tested the hypothesis that the concept of fatty acid trophic markers (FATM), widely used for studies on holoplankton with intermediate to high lipid contents, is also applicable to lipid-poor organisms such as meroplanktonic larvae. The incorporation of isotopically-enriched dietary C by L. conchilega larvae was traced, and lipid assimilation did not follow FA-specific relative availabilities in the diet. Furthermore, FAs that were unavailable in the diet, such as 22:5(n-3), were recorded in L. conchilega, suggesting their bioconversion by the larvae. The results indicate that L. conchilega larvae preferentially assimilate certain FAs and regulate their FA composition (lipid homeostasis) independently of that of their diet. Their quasi-homeostatic response to dietary FA availability could imply that the concept of FATM has limited application in lipid-poor organisms such as L. conchilega larvae.


Assuntos
Ácidos Graxos/metabolismo , Homeostase , Metabolismo dos Lipídeos , Poliquetos/metabolismo , Animais , Biomassa , Carbono/metabolismo , Isótopos de Carbono , Diatomáceas/metabolismo , Larva/metabolismo , Zooplâncton/metabolismo
17.
Mar Environ Res ; 129: 236-244, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28645656

RESUMO

Climate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels. Here, we investigated the effects of shifts in terrestrial organic matter and light availability on basal producers and their grazers. In twelve Baltic Sea mesocosms, we simulated the effects of increased river runoff alone and in combination. We manipulated light (clear/shade) and carbon (added/not added) in a fully factorial design, with three replicates. We assessed microzooplankton grazing preferences in each treatment to assess whether increased terrestrial organic matter input would: (1) decrease the phytoplankton to bacterial biomass ratio, (2) shift microzooplankton diet from phytoplankton to bacteria, and (3) affect microzooplankton biomass. We found that carbon addition, but not reduced light levels per se resulted in lower phytoplankton to bacteria biomass ratios. Microzooplankton generally showed a strong feeding preference for phytoplankton over bacteria, but, in carbon-amended mesocosms which favored bacteria, microzooplankton shifted their diet towards bacteria. Furthermore, low total prey availability corresponded with low microzooplankton biomass and the highest bacteria/phytoplankton ratio. Overall our results suggest that in shallow coastal waters, modified with allochthonous matter from river discharge, light attenuation may be inconsequential for the basal producer balance, whereas increased allochthonous carbon, especially if readily bioavailable, favors bacteria over phytoplankton. We conclude that climate change induced shifts at the base of the food web may alter energy mobilization to and the biomass of microzooplankton grazers.


Assuntos
Carbono/metabolismo , Ecossistema , Monitoramento Ambiental , Cadeia Alimentar , Bactérias , Biomassa , Mudança Climática , Eutrofização , Fitoplâncton/metabolismo , Rios
18.
PLoS One ; 9(9): e107737, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247989

RESUMO

Stoichiometric homeostasis is the ability of an organism to keep its body chemical composition constant, despite varying inputs. Stoichiometric homeostasis therefore constrains the metabolic needs of consumers which in turn often feed on resources not matching these requirements. In a broader context, homeostasis also relates to the capacity of an organism to maintain other biological parameters (e.g. body temperature) at a constant level over ambient environmental variations. Unfortunately, there are discrepancies in the literature and ecological and physiological definitions of homeostasis are disparate and partly contradictory. Here, we address this matter by reviewing the existing knowledge considering two distinct groups, regulators and conformers and, based on examples of thermo- and osmoregulation, we propose a new approach to stoichiometric homeostasis, unifying ecological and physiological concepts. We suggest a simple and precise graphical way to identify regulators and conformers: for any given biological parameter (e.g. nutrient stoichiometry, temperature), a sigmoidal relation between internal and external conditions can be observed for conformers while an inverse sigmoidal response is characteristic of regulators. This new definition and method, based on well-studied physiological mechanisms, unifies ecological and physiological approaches and is a useful tool for understanding how organisms are affected by and affect their environment.


Assuntos
Homeostase , Modelos Biológicos , Adaptação Fisiológica , Processos Autotróficos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA