Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200605

RESUMO

Converting wood waste into thermoplastic materials is an attractive means of increasing its utilization because complex three-dimensional molded products can easily be obtained by press molding wood with thermoplasticity. Chemical modification, especially esterification, is a promising method for imparting thermoplasticity to wood. In this study, we produced multiple propionylated wood specimens using several propionylation methods and elucidated the factors affecting the deformability of the wood. Regardless of the method, all of the propionylated wood samples showed deformability in the tangential direction. However, in the longitudinal direction, not only the degree of propionylation but also the propionylation method had a significant influence on the deformability. The flow in the tangential direction occurred under a relatively low pressure, whereas the flow in the longitudinal direction occurred under higher pressure. The chemical composition and motility of each sample were evaluated using solid-state NMR measurements. With some propionylation methods, decomposition of the cellulose main chain occurred during the reaction, which had a dominant effect on the deformability of the wood in the longitudinal direction. These results indicate that the deformability of wood can be controlled by the appropriate selection of a propionylation method and its treatment conditions.

2.
Polymers (Basel) ; 13(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915916

RESUMO

Converting wood waste into thermoplastic materials is an attractive means of increasing its utilization. A promising method for imparting thermoplasticity to wood is chemical modification, in which the hydroxyl groups in wood are substituted with benzyl groups. In the common method, wood powder is first treated with a highly concentrated aqueous NaOH solution, and then reacted with a benzylation reagent by heating for a long time under stirring. In this study, a 50% aqueous tetra-n-butylphosphonium hydroxide solution was used for the pretreatment of wood powder. This modified alkaline treatment enhanced the efficiency of the subsequent benzylation reaction, which could be conducted without heating over a shorter time. The effects of various conditions on the efficiency of the benzylation reaction were evaluated. Both the alkali pretreatment and the subsequent benzylation required only ~5-10 min of stirring without heating to obtain benzylated wood with a similar degree of benzylation as that achieved by the common method. The chemical structure of the benzylated wood powder was characterized by Fourier-transform infrared and solid-state NMR spectroscopies, and its thermal softening characteristics were evaluated by thermomechanical analysis. Finally, a translucent film could be obtained by hot-pressing the benzylated wood powder.

3.
RSC Adv ; 9(27): 15657-15667, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35514819

RESUMO

To investigate the behaviours of polyethylene glycol (PEG) and its interaction with biomass constituents in coniferous wood (Japanese cypress), variable temperature solid-state NMR spectra and relaxation times were measured from 20-80 °C. Signal intensities in the 1H and 13C PST-MAS NMR spectra changed depending on both the measurement temperature and the melting point of the impregnated PEG. In the 13C CP-MAS NMR spectra with increasing temperature, although the signal intensities of biomass constituents slightly decreased, signal intensities of PEG molecules in the cypress maximized at 80 °C. PEG impregnation into cypress decreased the T 1H values at 80 °C for short to medium chain PEG in the liquid phase while it decreased T 1H values at ambient temperature for long chain PEG in the solid phase because the interactions of PEG molecules and the biomass constituents of coniferous wood were different for different chain lengths of the PEG. These variable temperature measurements of both solid-state NMR spectra and relaxation time indicated that impregnation of longer chain PEG molecules produced higher hydrophobicity because of the increased steric hinderance of PEG attached to carbohydrates. The variable temperature measurements also showed that long chain PEG molecules were restricted to the lumen while short to medium chain length PEG molecules infiltrated into the intercellular region of the cell wall in addition to the lumen. These results obtained from the variable temperature NMR measurements were also supported by ATR-IR spectroscopy analyses.

4.
Sci Rep ; 8(1): 9819, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29959407

RESUMO

The purpose of the present study is to clarify the diffusion of non-volatile substances into cell walls during the conditioning procedure under varying relative humidities (RH). In this paper, wood blocks were impregnated using an aqueous solution of melamine formaldehyde (MF), and they were subsequently conditioned under RHs of 11, 43, and 75%. The solute that diffused into the cell walls was visualized using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The volumetric relative swelling of the samples during the conditioning procedure was calculated. The results showed increased cell wall swelling at higher RH, which may have been caused by higher MF diffusion into the cell walls and/or higher moisture content. Cryo-TOF-SIMS measurements showed that more cell cavities were unfilled with MF at higher RH, indicating that most of the MF diffused from the cell cavities into the cell walls. The relative intensity of MF in the cell walls of the cured samples was evaluated from dry-TOF-SIMS images, which showed a higher relative intensity of MF in the cell walls at higher RH. With the ability to visualize and semi-quantitatively evaluate the solute in cell walls, TOF-SIMS will serve as a powerful tool for future studies of solute diffusion mechanisms in solution-impregnated wood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA