Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046997

RESUMO

Gastrointestinal stromal tumors (GISTs) are the most common malignant mesenchymal neoplasms of the gastrointestinal tract. The gold standard for the diagnosis of GISTs is morphologic analysis with an immunohistochemical evaluation plus genomic profiling to assess the mutational status of lesions. The majority of GISTs are driven by gain-of-function mutations in the proto-oncogene c-KIT encoding the tyrosine kinase receptor (TKR) known as KIT and in the platelet-derived growth factor-alpha receptor (PDGFRA) genes. Approved therapeutics are orally available as tyrosine kinase inhibitors (TKIs) targeting KIT and/or PDGFRA oncogenic activation. Among these, imatinib has changed the management of patients with unresectable or metastatic GISTs, improving their survival time and delaying disease progression. Nevertheless, the majority of patients with GISTs experience disease progression after 2-3 years of imatinib therapy due to the development of secondary KIT mutations. Today, based on the identification of new driving oncogenic mutations, targeted therapy and precision medicine are regarded as the new frontiers for GISTs. This article reviews the most important mutations in GISTs and highlights their importance in the current understanding and treatment options of GISTs, with an emphasis on the most recent clinical trials.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Mutação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia
2.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604720

RESUMO

Advances in the use of targeted and immune therapies have revolutionized the clinical management of melanoma patients, prolonging significantly their overall and progression-free survival. However, both targeted and immune therapies suffer limitations due to genetic mutations and epigenetic modifications, which determine a great heterogeneity and phenotypic plasticity of melanoma cells. Acquired resistance of melanoma patients to inhibitors of BRAF (BRAFi) and MEK (MEKi), which block the mitogen-activated protein kinase (MAPK) pathway, limits their prolonged use. On the other hand, immune checkpoint inhibitors improve the outcomes of patients in only a subset of them and the molecular mechanisms underlying lack of responses are under investigation. There is growing evidence that altered expression levels of microRNAs (miRNA)s induce drug-resistance in tumor cells and that restoring normal expression of dysregulated miRNAs may re-establish drug sensitivity. However, the relationship between specific miRNA signatures and acquired resistance of melanoma to MAPK and immune checkpoint inhibitors is still limited and not fully elucidated. In this review, we provide an updated overview of how miRNAs induce resistance or restore melanoma cell sensitivity to mitogen-activated protein kinase inhibitors (MAPKi) as well as on the relationship existing between miRNAs and immune evasion by melanoma cell resistant to MAPKi.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/genética , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno/química , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia
3.
Cells ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891109

RESUMO

Chondrosarcoma (ChS), a malignant cartilage-producing tumor, is the second most frequently diagnosed osseous sarcoma after osteosarcoma. It represents a very heterogeneous group of malignant chemo- and radiation-resistant neoplasms, accounting for approximately 20% of all bone sarcomas. The majority of ChS patients have a good prognosis after a complete surgical resection, as these tumors grow slowly and rarely metastasize. Conversely, patients with inoperable disease, due to the tumor location, size, or metastases, represent a great clinical challenge. Despite several genetic and epigenetic alterations that have been described in distinct ChS subtypes, very few therapeutic options are currently available for ChS patients. Therefore, new prognostic factors for tumor progression as well as new treatment options have to be explored, especially for patients with unresectable or metastatic disease. Recent studies have shown that a correlation between immune infiltrate composition, tumor aggressiveness, and survival does exist in ChS patients. In addition, the intra-tumor microvessel density has been proven to be associated with aggressive clinical behavior and a high metastatic potential in ChS. This review will provide an insight into the ChS microenvironment, since immunotherapy and antiangiogenic agents are emerging as interesting therapeutic options for ChS patients.


Assuntos
Condrossarcoma , Microambiente Tumoral , Humanos , Condrossarcoma/patologia , Condrossarcoma/genética , Condrossarcoma/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/genética , Imunoterapia , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/farmacologia
4.
Int J Nanomedicine ; 18: 4121-4142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525693

RESUMO

Introduction: Currently, conventional treatments of hepatocellular carcinoma (HCC) are not selective enough for tumor tissue and lead to multidrug resistance and drug toxicity. Although sorafenib (SOR) is the standard first-line systemic therapy approved for the clinical treatment of HCC, its poor aqueous solubility and rapid clearance result in low absorption efficiency and severely limit its use for local treatment. Methods: Herein, we present the synthesis of biodegradable polymeric Poly (D, L-Lactide-co-glycolide) (PLGA) particles loaded with SOR (PS) by emulsion-solvent evaporation process. The particles are carefully characterized focusing on particle size, surface charge, morphology, drug loading content, encapsulation efficiency, in vitro stability, drug release behaviour and tested on HepG2 cells. Additionally, PLGA particles have been coupled on side emitting optical fibers (seOF) integrated in a microfluidic device for light-triggered local release. Results: PS have a size of 248 nm, tunable surface charge and a uniform and spherical shape without aggregation. PS shows encapsulation efficiency of 89.7% and the highest drug loading (8.9%) between the SOR-loaded PLGA formulations. Treating HepG2 cells with PS containing SOR at 7.5 µM their viability is dampened to 40%, 30% and 17% after 48, 129 and 168 hours of incubation, respectively. Conclusion: The high PS stability, their sustained release profile and the rapid cellular uptake corroborate the enhanced cytotoxicity effect on HepG2. With the prospect of developing biomedical tools to control the spatial and temporal release of drugs, we successfully demonstrated the potentiality of seOF for light-triggered local release of the carriers. Our prototypical system paves the way to new devices integrating microfluidics, optical fibers, and advanced carriers capable to deliver minimally invasive locoregional cancer treatments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Sorafenibe , Ácido Láctico , Ácido Poliglicólico , Portadores de Fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Linhagem Celular Tumoral , Tamanho da Partícula
5.
J Exp Clin Cancer Res ; 42(1): 317, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008717

RESUMO

BACKGROUND: BRAF-mutant melanoma patients benefit from the combinatorial treatments with BRAF and MEK inhibitors. However, acquired drug resistance strongly limits the efficacy of these targeted therapies in time. Recently, many findings have underscored the involvement of microRNAs as main drivers of drug resistance. In this context, we previously identified a subset of oncomiRs strongly up-regulated in drug-resistant melanomas. In this work, we shed light on the molecular role of two as yet poorly characterized oncomiRs, miR-4443 and miR-4488. METHODS: Invasion and migration have been determined by wound healing, transwell migration/invasion assays and Real Time Cell Analysis (RTCA) technology. miR-4488 and miR-4443 have been measured by qRT-PCR. Nestin levels have been tested by western blot, confocal immunofluorescence, immunohistochemical and flow cytometry analyses. RESULTS: We demonstrate that the two oncomiRs are responsible for the enhanced migratory and invasive phenotypes, that are a hallmark of drug resistant melanoma cells. Moreover, miR-4443 and miR-4488 promote an aberrant cytoskeletal reorganization witnessed by the increased number of stress fibers and cellular protrusions-like cancer cell invadopodia. Mechanistically, we identified the intermediate filament nestin as a molecular target of both oncomiRs. Finally, we have shown that nestin levels are able to predict response to treatments in melanoma patients. CONCLUSIONS: Altogether these findings have profound translational implications in the attempt i) to develop miRNA-targeting therapies to mitigate the metastatic phenotypes of BRAF-mutant melanomas and ii) to identify novel biomarkers able to guide clinical decisions.


Assuntos
Melanoma , MicroRNAs , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , MicroRNAs/metabolismo , Nestina/genética , Nestina/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
6.
Cancers (Basel) ; 14(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35158766

RESUMO

Several studies have ascertained that uPA and uPAR do participate in tumor progression and metastasis and are involved in cell adhesion, migration, invasion and survival, as well as angiogenesis. Increased levels of uPA and uPAR in tumor tissues, stroma and biological fluids correlate with adverse clinic-pathologic features and poor patient outcomes. After binding to uPAR, uPA activates plasminogen to plasmin, a broad-spectrum matrix- and fibrin-degrading enzyme able to facilitate tumor cell invasion and dissemination to distant sites. Moreover, uPAR activated by uPA regulates most cancer cell activities by interacting with a broad range of cell membrane receptors. These findings make uPA and uPAR not only promising diagnostic and prognostic markers but also attractive targets for developing anticancer therapies. In this review, we debate the uPA/uPAR structure-function relationship as well as give an update on the molecules that interfere with or inhibit uPA/uPAR functions. Additionally, the possible clinical development of these compounds is discussed.

7.
Cancers (Basel) ; 15(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36612117

RESUMO

The expression level of the tumor suppressor p53 is controlled by the E3 ubiquitin ligase MDM2 with a regulatory feedback loop, which allows p53 to upregulate its inhibitor MDM2. In this manuscript we demonstrated that p90RSK binds and phosphorylates MDM2 on serine 166 both in vitro and in vivo by kinase assay, immunoblot, and co-immunoprecipitation assay; this phosphorylation increases the stability of MDM2 which in turn binds p53, ubiquitinating it and promoting its degradation by proteasome. A pharmacological inhibitor of p90RSK, BI-D1870, decreases MDM2 phosphorylation, and restores p53 function, which in turn transcriptionally increases the expression of cell cycle inhibitor p21 and of pro-apoptotic protein Bax and downregulates the anti-apoptotic protein Bcl-2, causing a block of cell proliferation, measured by a BrdU assay and growth curve, and promoting apoptosis, measured by a TUNEL assay. Finally, an immunohistochemistry evaluation of primary thyroid tumors, in which p90RSK is very active, confirms MDM2 stabilization mediated by p90RSK phosphorylation.

8.
J Exp Clin Cancer Res ; 41(1): 83, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241126

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) represents an unmet clinical need due to the very poor prognosis and the lack of effective therapy. Here we investigated the potential of domatinostat (4SC-202), a new class I histone deacetylase (HDAC) inhibitor, currently in clinical development, to sensitize PDAC to first line standard gemcitabine (G)/taxol (T) doublet chemotherapy treatment. METHODS: Synergistic anti-tumor effect of the combined treatment was assessed in PANC1, ASPC1 and PANC28 PDAC cell lines in vitro as well as on tumor spheroids and microtissues, by evaluating combination index (CI), apoptosis, clonogenic capability. The data were confirmed in vivo xenograft models of PANC28 and PANC1 cells in athymic mice. Cancer stem cells (CSC) targeting was studied by mRNA and protein expression of CSC markers, by limiting dilution assay, and by flow cytometric and immunofluorescent evaluation of CSC mitochondrial and cellular oxidative stress. Mechanistic role of forkhead box M1 (FOXM1) and downstream targets was evaluated in FOXM1-overexpressing PDAC cells. RESULTS: We showed that domatinostat sensitized in vitro and in vivo models of PDAC to chemotherapeutics commonly used in PDAC patients management and particularly to GT doublet, by targeting CSC compartment through the induction of mitochondrial and cellular oxidative stress. Mechanistically, we showed that domatinostat hampers the expression and function of FOXM1, a transcription factor playing a crucial role in stemness, oxidative stress modulation and DNA repair. Domatinostat reduced FOXM1 protein levels by downregulating mRNA expression and inducing proteasome-mediated protein degradation thus preventing nuclear translocation correlated with a reduction of FOXM1 target genes. Furthermore, by overexpressing FOXM1 in PDAC cells we significantly reduced domatinostat-inducing oxidative mitochondrial and cellular stress and abolished GT sensitization, both in adherent and spheroid cells, confirming FOXM1 crucial role in the mechanisms described. Finally, we found a correlation of FOXM1 expression with poor progression free survival in PDAC chemotherapy-treated patients. CONCLUSIONS: Overall, we suggest a novel therapeutic strategy based on domatinostat to improve efficacy and to overcome resistance of commonly used chemotherapeutics in PDAC that warrant further clinical evaluation.


Assuntos
Benzamidas , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Benzamidas/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
9.
Cancers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209309

RESUMO

Myxoid liposarcoma (MLPS) is the second most common subtype of liposarcoma and has tendency to metastasize to soft tissues. To date, the mechanisms of invasion and metastasis of MLPS remain unclear, and new therapeutic strategies that improve patients' outcomes are expected. In this study, we analyzed by immunohistochemistry the immune cellular components and microvessel density in tumor tissues from patients affected by MLPS. In order to evaluate the effects of primary human MLPS cells on macrophage polarization and, in turn, the ability of macrophages to influence invasiveness of MLPS cells, non-contact and 3D organotypic co-cultures were set up. High grade MLPS tissues were found heavily vascularized, exhibited a CD3, CD4, and CD8 positive T lymphocyte-poor phenotype and were massively infiltrated by CD163 positive M2-like macrophages. Conversely, low grade MLPS tissues were infiltrated by a discrete amount of CD3, CD4, and CD8 positive T lymphocytes and a scarce amount of CD163 positive macrophages. Kaplan-Meier analysis revealed a shorter Progression Free Survival in MLPS patients whose tumor tissues were highly vascularized and heavily infiltrated by CD163 positive macrophages, indicating a clear-cut link between M2-like macrophage abundance and poor prognosis in patients. Moreover, we documented that, in co-culture, soluble factors produced by primary human MLPS cells induce macrophage polarization toward an M2-like phenotype which, in turn, increases MLPS cell capability to spread into extracellular matrix and to cross endothelial monolayers. The identification of M2-like polarization factors secreted by MLPS cells may allow to develop novel targeted therapies counteracting MLPS progression.

10.
Front Immunol ; 11: 1749, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042107

RESUMO

Neutrophil Extracellular Traps (NETs) are net-like structures composed of DNA-histone complexes and proteins released by activated neutrophils. In addition to their key role in the neutrophil innate immune response, NETs are also involved in autoimmune diseases, like systemic lupus erythematosus, rheumatoid arthritis, psoriasis, and in other non-infectious pathological processes, as coagulation disorders, thrombosis, diabetes, atherosclerosis, vasculitis, and cancer. Recently, a large body of evidence indicates that NETs are involved in cancer progression and metastatic dissemination, both in animal models and cancer patients. Interestingly, a close correlation between cancer cell recruitment of neutrophils in the tumor microenvironment (Tumor Associated Neutrophils. TANs) and NET formation has been also observed either in primary tumors and metastatic sites. Moreover, NETs can also catch circulating cancer cells and promote metastasis. Furthermore, it has been reported that wake dormant cancer cells, causing tumor relapse and metastasis. This review will primarily focus on the pro-tumorigenic activity of NETs in tumors highlighting their ability to serve as a potential target for cancer therapy.


Assuntos
Armadilhas Extracelulares/metabolismo , Neoplasias/metabolismo , Neutrófilos/metabolismo , Microambiente Tumoral , Animais , Antineoplásicos/uso terapêutico , Progressão da Doença , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/imunologia , Humanos , Imunoterapia , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Transdução de Sinais
11.
Int J Oncol ; 56(5): 1212-1224, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32319579

RESUMO

S­Adenosyl­L­methionine (AdoMet) is the principal methyl donor in transmethylation reactions fundamental to sustaining epigenetic modifications. Over the past decade, AdoMet has been extensively investigated for its anti­proliferative, pro­apoptotic and anti­metastatic roles in several types of human cancer. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer worldwide, and is an aggressive type of cancer that is associated with a high recurrence rate, metastasis and poor treatment outcomes. The present study demonstrates, for the first time, to the best of our knowledge, that AdoMet induces cell cycle arrest and inhibits the migratory and invasive ability of two different HNSCC cell lines, oral Cal­33 and laryngeal JHU­SCC­011 cells. In both cell lines, AdoMet attenuated cell cycle progression, decreased the protein level of several cyclins and downregulated the expression of p21 cell cycle inhibitor. Moreover, AdoMet was able to inhibit Cal­33 and JHU­SCC­011 cell migration in a dose­dependent manner after 24 and 48 h, respectively, and also induced a significant reduction in the cell invasive ability, as demonstrated by Matrigel invasion assay monitored by the xCELLigence RTCA system. Western blot analysis of several migration and invasion markers confirmed the inhibitory effects exerted by AdoMet on these processes and highlighted AKT, ß­catenin and small mothers against decapentaplegic (SMAD) as the main signaling pathways modulated by AdoMet. The present study also demonstrated that the combination of AdoMet and cisplatin synergistically inhibited HNSCC cell migration. Taken together, these findings demonstrate that the physiological compound, AdoMet, affects the motility and extracellular matrix invasive capability in HNSCC. Thus, AdoMet may prove to be a good candidate for future drug development against metastatic cancer.


Assuntos
Cisplatino/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclinas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , S-Adenosilmetionina/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Invasividade Neoplásica , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Fatores de Tempo
12.
Cells ; 9(4)2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344648

RESUMO

Chondrosarcomas (CHS) are malignant cartilaginous neoplasms with diverse morphological features, characterized by resistance to chemo- and radiation therapies. In this study, we investigated the role of tumor-associated macrophages (TAM)s in tumor tissues from CHS patients by immunohistochemistry. Three-dimensional organotypic co-cultures were set up in order to evaluate the contribution of primary human CHS cells in driving an M2-like phenotype in monocyte-derived primary macrophages, and the capability of macrophages to promote growth and/or invasiveness of CHS cells. Finally, with an in vivo model of primary CHS cells engrafted in nude mice, we tested the ability of a potent peptide inhibitor of cell migration (Ac-d-Tyr-d-Arg-Aib-d-Arg-NH2, denoted RI-3) to reduce recruitment and infiltration of monocytes into CHS neoplastic lesions. We found a significant correlation between alternatively activated M2 macrophages and intratumor microvessel density in both conventional and dedifferentiated CHS human tissues, suggesting a link between TAM abundance and vascularization in CHS. In 3D and non-contact cu-culture models, soluble factors produced by CHS induced a M2-like phenotype in macrophages that, in turn, increased motility, invasion and matrix spreading of CHS cells. Finally, we present evidence that RI-3 successfully prevent both recruitment and infiltration of monocytes into CHS tissues, in nude mice.


Assuntos
Condrossarcoma/patologia , Monócitos/patologia , Macrófagos Associados a Tumor/patologia , Adulto , Idoso , Animais , Antígenos CD/metabolismo , Colágeno/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Imunofenotipagem , Masculino , Camundongos Nus , Microvasos/patologia , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Fenótipo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Células THP-1 , Fatores de Tempo , Macrófagos Associados a Tumor/efeitos dos fármacos
13.
Front Oncol ; 9: 1146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799175

RESUMO

Tumor Associated Neutrophils (TANs) are engaged into the tumor microenvironment by cytokines and chemokines, can be distinguished according to their activation and cytokine status and effects on tumor cell growing in N1 and N2 TANs. N1 TANs exert an antitumor activity, by direct or indirect cytotoxicity. N2 TANs stimulate immunosuppression, tumor growth, angiogenesis and metastasis by DNA instability, or by cytokines and chemokines release. In tumor patients, either a high number of TANs and Neutrophil-to-Lymphocyte Ratio (NLR) do correlate with poor prognosis, and, so far, TAN counts and NLR can be regarded as biomarkers. Owing to the pivotal role of TANs in stimulating tumor progression, therapeutic strategies to target TANs have been suggested, and two major approaches have been proposed: (a) targeting the CXCL-8/CXCR-1/CXCR-2 axis, thereby blocking TANs or (b) targeting substances produced by polymorpho-nuclear cells that promote tumor growth. Many studies have been accomplished either in vitro and in animal models, whereas clinical studies are restrained, presently, due to the risk of inducing immunosuppression. In this review, we deeply discuss the anti-tumorigenic or pro-tumorigenic activity of TANs. In particular, TANs relevance in tumor prognosis and in vitro therapeutic strategies are widely described. On-going clinical trials, aimed to inhibit neutrophil recruitment into the tumor are also accurately debated.

14.
Front Oncol ; 9: 82, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30847298

RESUMO

Disseminating Cancer Stem Cells (CSCs) initiate growth in specific niches of the host tissues, the cellular and molecular components of which sustain signaling pathways that support their survival, self-renewal dormancy and reactivation. In the metastatic niche, tumor cells may enter in a dormant state to survive and, consequently, the metastasis can remain latent for years. Despite the clinical importance of metastatic latency, little is known about what induces CSCs to enter a dormant state and what allows them to remain viable for years in this state. CSCs exhibit genetic, epigenetic and cellular adaptations that confer resistance to classical therapeutic approaches. The identification of potential CSC targets is complicated by the fact that CSCs may arise as a consequence of their relationship with the local microenvironment into the metastatic niches. Indeed, microenvironment modulates the capability of CSCs to evade the innate immune response and survive. Some new therapeutic options that include drugs targeting microenvironment components are achieving encouraging results in reducing the number of CSCs in tumors and/or overcoming their resistance in preclinical studies. This review will focus on specific CSC features with an emphasis on the role of tumor microenvironment in supporting metastatic dissemination of CSCs. In addition, it sheds light on potential microenvironment-targeted therapies aimed to counteract seeding and survival of CSCs in the metastatic niche.

15.
Sci Rep ; 9(1): 12169, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434916

RESUMO

The interaction between the short 88Ser-Arg-Ser-Arg-Tyr92 sequence of the urokinase receptor (uPAR) and the formyl peptide receptor type 1 (FPR1) elicits cell migration. We generated the Ac-(D)-Tyr-(D)-Arg-Aib-(D)-Arg-NH2 (RI-3) peptide which inhibits the uPAR/FPR1 interaction, reducing migration of FPR1 expressing cells toward N-formyl-methionyl-leucyl-phenylalanine (fMLF) and Ser-Arg-Ser-Arg-Tyr (SRSRY) peptides. To understand the structural basis of the RI-3 inhibitory effects, the FPR1/fMLF, FPR1/SRSRY and FPR1/RI-3 complexes were modeled and analyzed, focusing on the binding pocket of FPR1 and the interaction between the amino acids that signal to the FPR1 C-terminal loop. We found that RI-3 shares the same binding site of fMLF and SRSRY on FPR1. However, while fMLF and SRSRY display the same agonist activation signature (i.e. the series of contacts that transmit the conformational transition throughout the complex), translating binding into signaling, RI-3 does not interact with the activation region of FPR1 and hence does not activate signaling. Indeed, fluorescein-conjugated RI-3 prevents either fMLF and SRSRY uptake on FPR1 without triggering FPR1 internalization and cell motility in the absence of any stimulus. Collectively, our data show that RI-3 is a true FPR1 antagonist and suggest a pharmacophore model useful for development of compounds that selectively inhibit the uPAR-triggered, FPR1-mediated cell migration.


Assuntos
Peptídeos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacologia , Ligação Proteica , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Ratos , Receptores de Formil Peptídeo/química , Receptores de Formil Peptídeo/genética , Relação Estrutura-Atividade
16.
J Exp Clin Cancer Res ; 38(1): 459, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703596

RESUMO

BACKGROUND: The biological behavior of epithelial ovarian cancer (EOC) is unique since EOC cells metastasize early to the peritoneum. Thereby, new anti-target agents designed to block trans-coelomic dissemination of EOC cells may be useful as anti-metastatic drugs. The Urokinase Plasminogen Activator Receptor (uPAR) is overexpressed in EOC tissues, and its truncated forms released in sera and/or ascitic fluid are associated with poor prognosis and unfavorable clinical outcome. We documented that uPAR triggers intra-abdominal dissemination of EOC cells through the interaction of its 84-95 sequence with the Formyl Peptide Receptor type 1 (FPR1), even as short linear peptide Ser-Arg-Ser-Arg-Tyr (SRSRY). While the pro-metastatic role of uPAR is well documented, little information regarding the expression and role of FPR1 in EOC is currently available. METHODS: Expression levels of uPAR and FPR1 in EOC cells and tissues were assessed by immunofluorescence, Western blot, or immunohystochemistry. Cell adhesion to extra-cellular matrix proteins and mesothelium as well as mesothelium invasion kinetics by EOC cells were monitored using the xCELLigence technology or assessed by measuring cell-associated fluorescence. Cell internalization of FPR1 was identified on multiple z-series by confocal microscopy. Data from in vitro assays were analysed by one-way ANOVA and post-hoc Dunnett t-test for multiple comparisons. Tissue microarray data were analyzed with the Pearson's Chi-square (χ2) test. RESULTS: Co-expression of uPAR and FPR1 by SKOV-3 and primary EOC cells confers a marked adhesion to vitronectin. The extent of cell adhesion decreases to basal level by pre-exposure to anti-uPAR84-95 Abs, or to the RI-3 peptide, blocking the uPAR84-95/FPR1 interaction. Furthermore, EOC cells exposed to RI-3 or desensitized with an excess of SRSRY, fail to adhere also to mesothelial cell monolayers, losing the ability to cross them. Finally, primary and metastatic EOC tissues express a high level of FPR1. CONCLUSIONS: Our findings identify for the first time FPR1 as a potential biomarker of aggressive EOC and suggests that inhibitors of the uPAR84-95/FPR1 crosstalk may be useful for the treatment of metastatic EOC.


Assuntos
Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Formil Peptídeo/metabolismo , Adulto , Idoso , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proteínas da Matriz Extracelular/metabolismo , Feminino , Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Receptores de Formil Peptídeo/genética
17.
J Exp Clin Cancer Res ; 38(1): 317, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319863

RESUMO

BACKGROUND: Molecular markers for prostate cancer (PCa) are required to improve the early definition of patient outcomes. Atypically large extracellular vesicles (EVs), referred as "Large Oncosomes" (LO), have been identified in highly migratory and invasive PCa cells. We recently developed and characterized the DU145R80 subline, selected from parental DU145 cells as resistant to inhibitors of mevalonate pathway. DU145R80 showed different proteomic profile compared to parental DU145 cells, along with altered cytoskeleton dynamics and a more aggressive phenotype. METHODS: Immunofluorescence staining and western blotting were used to identify blebbing and EVs protein cargo. EVs, purified by gradient ultra-centrifugations, were analyzed by tunable resistive pulse sensing and multi-parametric flow cytometry approach coupled with high-resolution imaging technologies. LO functional effects were tested in vitro by adhesion and invasion assays and in vivo xenograft model in nude mice. Xenograft and patient tumor tissues were analyzed by immunohistochemistry. RESULTS: We found spontaneous blebbing and increased shedding of LO from DU145R80 compared to DU145 cells. LO from DU145R80, compared to those from DU145, carried increased amounts of key-molecules involved in PCa progression including integrin alpha V (αV-integrin). By incubating DU145 cells with DU145R80-derived LO we demonstrated that αV-integrin on LO surface was functionally involved in the increased adhesion and invasion of recipient cells, via AKT. Indeed either the pre-incubation of LO with an αV-integrin blocking antibody, or a specific AKT inhibition in recipient cells are able to revert the LO-induced functional effects. Moreover, DU145R80-derived LO also increased DU145 tumor engraftment in a mice model. Finally, we identified αV-integrin positive LO-like structures in tumor xenografts as well as in PCa patient tissues. Increased αV-integrin tumor expression correlated with high Gleason score and lymph node status. CONCLUSIONS: Overall, this study is the first to demonstrate the critical role of αV-integrin positive LO in PCa aggressive features, adding new insights in biological function of these large EVs and suggesting their potential use as PCa prognostic markers.


Assuntos
Vesículas Extracelulares/patologia , Integrina alfaV/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Gradação de Tumores , Invasividade Neoplásica , Transplante de Neoplasias , Neoplasias da Próstata/metabolismo , Proteômica/métodos , Regulação para Cima
18.
Int J Oncol ; 53(3): 1149-1159, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29956724

RESUMO

Melanoma is a molecularly heterogeneous disease with many genetic mutations and altered signaling pathways. Activating mutations in the BRAF oncogene are observed in approximately 50% of cutaneous melanomas and the use of BRAF inhibitor (BRAFi) compounds has been reported to improve the outcome of patients with BRAF-mutated metastatic melanoma. However, the majority of these patients develop resistance within 6-8 months following the initiation of BRAFi treatment. In this study, we examined the possible use of the poly(ADP-ribose) polymerase 1 (PARP1) inhibitor, ABT-888 (veliparib), as a novel molecule that may be successfully employed in the treatment of BRAFi-resistant melanoma cells. Sensitive and resistant to BRAFi dabrafenib A375 cells were exposed to increasing concentrations of ABT-888. Cell viability and apoptosis were assessed by MTT assay and Annexin V-FITC analysis, respectively. The cell migratory and invasive ability was investigated using the xCELLigence technology and Boyden chamber assays, respectively. ABT-888 was found to reduce cell viability and exhibited pro-apoptotic activity in melanoma cell lines, independently from the BRAF/NRAS mutation status, in a dose-dependent manner, with the maximal effect being reached in the 25-50 µM concentration range. Moreover, ABT-888 promoted apoptosis in both the sensitive and resistant A375 cells, suggesting that ABT-888 may be useful in the treatment of BRAFi-resistant subsets of melanoma cells. Finally, in accordance with the involvement of PARP1 in actin cytoskeletal machinery, we found that the cytoskeletal organization, motility and invasive capability of both the A375 and A375R cells decreased upon exposure to 5 µM ABT-888 for 24 h. On the whole, the findings of this study highlight the pivotal role of PARP1 in the migration and invasion of melanoma cells, suggesting that ABT-888 may indeed be effective, not only as a pro-apoptotic drug for use in the treatment of BRAFi-resistant melanoma cells, but also in suppressing their migratory and invasive activities.


Assuntos
Benzimidazóis/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Adulto , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzimidazóis/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Melanoma/genética , Melanoma/patologia , Mutação , Invasividade Neoplásica/prevenção & controle , Oximas/farmacologia , Oximas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
19.
Eur J Med Chem ; 143: 348-360, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29202399

RESUMO

The receptor for the urokinase-type plasminogen activator (uPAR) is a widely recognized master regulator of cell migration. We and others have previously documented that the uPAR(84-95) sequence, interacts with the formyl peptide receptors (FPR)s, henceforth inducing cell migration of several cell lines, including leukocytes, and the synthetic shorter peptide (Ser88-Arg-Ser-Arg-Tyr92, SRSRY) retains chemotactic activity in vitro and in vivo. Recently, we have developed the head-to-tail cyclic analog [SRSRY], a new potent and stable inhibitor of monocyte trafficking. This prompted us to develop novel cyclic and linear analogs of [SRSRY] with the aim to broaden the knowledge about structure-activity relationships of peptide [SRSRY]. Herein we report their synthesis, effects on cell migration, conformational and docking analyses which served to envisage a new pharmacophore model for inhibitors of FPR1-triggered cell migration.


Assuntos
Peptídeos/farmacologia , Receptores de Formil Peptídeo/antagonistas & inibidores , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Ratos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/química , Relação Estrutura-Atividade
20.
J Exp Clin Cancer Res ; 36(1): 180, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29216889

RESUMO

BACKGROUND: Accumulating evidence demonstrates that the Urokinase Receptor (uPAR) regulates tumor cell migration through its assembly in composite regulatory units with transmembrane receptors, and uPAR88-92 is the minimal sequence required to induce cell motility through the Formyl Peptide Receptor type 1 (FPR1). Both uPAR and FPR1 are involved in melanoma tumor progression, suggesting that they may be targeted for therapeutic purposes. In this study, the role of the uPAR-FPR1 cross-talk to sustain melanoma cell ability to invade extracellular matrix and cross endothelial barriers is investigated. Also, the possibility that inhibition of the uPAR mediated FPR1-dependent signaling may prevent matrix invasion and transendothelial migration of melanoma cells was investigated. METHODS: Expression levels of uPAR and FPR1 were assessed by immunocytochemistry, Western Blot and qRT-PCR. Cell migration was investigated by Boyden chamber and wound-healing assays. Migration and invasion kinetics, trans-endothelial migration and proliferation of melanoma cells were monitored in real time using the xCELLigence technology. The agonist-triggered FPR1 internalization was visualized by confocal microscope. Cell adhesion to endothelium was determined by fluorometer measurement of cell-associated fluorescence or identified on multiple z-series by laser confocal microscopy. The 3D-organotypic models were set up by seeding melanoma cells onto collagen I matrices embedded dermal fibroblasts. Data were analyzed by one-way ANOVA and post-hoc Dunnett t-test for multiple comparisons. RESULTS: We found that the co-expression of uPAR and FPR1 confers to A375 and M14 melanoma cells a clear-cut capability to move towards chemotactic gradients, to cross extracellular matrix and endothelial monolayers. FPR1 activity is required, as cell migration and invasion were abrogated by receptor desensitization. Finally, melanoma cell ability to move toward chemotactic gradients, invade matrigel or fibroblast-embedded collagen matrices and cross endothelial monolayers are prevented by anti-uPAR84-95 antibodies or by the RI-3 peptide which we have previously shown to inhibit the uPAR84-95/FPR1 interaction. CONCLUSIONS: Collectively, our findings identify uPAR and FPR1 as relevant effectors of melanoma cell invasiveness and suggest that inhibitors of the uPAR84-95/FPR1 cross-talk may be useful for the treatment of metastatic melanoma.


Assuntos
Melanoma/metabolismo , Receptores de Formil Peptídeo/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Melanoma/genética , Melanoma/patologia , Receptores de Formil Peptídeo/genética , Transfecção , Ativador de Plasminogênio Tipo Uroquinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA