Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 264: 119771, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436710

RESUMO

BACKGROUND: Synaptic vesicle glycoprotein 2A (SV2A) is a vesicle glycoprotein involved in neurotransmitter release. SV2A is located on the pre-synaptic terminals of neurons and visualized using the radioligand [11C]UCB-J and positron emission tomography (PET) imaging. Thus, SV2A PET imaging can provide a proxy for pre-synaptic density in health and disease. This study aims to apply independent component analysis (ICA) to SV2A PET data acquired in mice to identify pre-synaptic density networks (pSDNs), explore how ageing affects these pSDNs, and determine the impact of a neurological disorder on these networks. METHODS: We used [11C]UCB-J PET imaging data (n = 135) available at different ages (3, 7, 10, and 16 months) in wild-type (WT) C57BL/6J mice and in diseased mice (mouse model of Huntington's disease, HD) with reported synaptic deficits. First, ICA was performed on a healthy dataset after it was split into two equal-sized samples (n = 36 each) and the analysis was repeated 50 times in different partitions. We tested different model orders (8, 12, and 16) and identified the pSDNs. Next, we investigated the effect of age on the loading weights of the identified pSDNs. Additionally, the identified pSDNs were compared to those of diseased mice to assess the impact of disease on each pSDNs. RESULTS: Model order 12 resulted in the preferred choice to provide six reliable and reproducible independent components (ICs) as supported by the cluster-quality index (IQ) and regression coefficients (ß) values. Temporal analysis showed age-related statistically significant changes on the loading weights in four ICs. ICA in an HD model revealed a statistically significant disease-related effect on the loading weights in several pSDNs in line with the progression of the disease. CONCLUSION: This study validated the use of ICA on SV2A PET data acquired with [11C]UCB-J for the identification of cerebral pre-synaptic density networks in mice in a rigorous and reproducible manner. Furthermore, we showed that different pSDNs change with age and are affected in a disease condition. These findings highlight the potential value of ICA in understanding pre-synaptic density networks in the mouse brain.


Assuntos
Glicoproteínas de Membrana , Pirrolidinonas , Animais , Camundongos , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons/métodos , Envelhecimento , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
2.
Eur J Nucl Med Mol Imaging ; 49(4): 1166-1175, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34651228

RESUMO

PURPOSE: As several therapies aimed at lowering mutant huntingtin (mHTT) brain levels in Huntington's disease (HD) are currently being investigated, noninvasive positron emission tomography (PET) imaging of mHTT could be utilized to directly evaluate therapeutic efficacy and monitor disease progression. Here we characterized and longitudinally assessed the novel radioligand [11C]CHDI-626 for mHTT PET imaging in the zQ175DN mouse model of HD. METHODS: After evaluating radiometabolites and radioligand kinetics, we conducted longitudinal dynamic PET imaging at 3, 6, 9, and 13 months of age (M) in wild-type (WT, n = 17) and heterozygous (HET, n = 23) zQ175DN mice. Statistical analysis was performed to evaluate temporal and genotypic differences. Cross-sectional cohorts at each longitudinal time point were included for post-mortem [3H]CHDI-626 autoradiography. RESULTS: Despite fast metabolism and kinetics, the radioligand was suitable for PET imaging of mHTT. Longitudinal quantification could discriminate between genotypes already at premanifest stage (3 M), showing an age-associated increase in signal in HET mice in parallel with mHTT aggregate load progression, as supported by the post-mortem [3H]CHDI-626 autoradiography. CONCLUSION: With clinical evaluation underway, [11C]CHDI-626 PET imaging appears to be a suitable preclinical candidate marker to monitor natural HD progression and for the evaluation of mHTT-lowering therapies.


Assuntos
Doença de Huntington , Animais , Radioisótopos de Carbono , Estudos Transversais , Modelos Animais de Doenças , Humanos , Doença de Huntington/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons/métodos
3.
Neuroimage ; 233: 117961, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741482

RESUMO

Since accurate quantification of 2-deoxy-2-18F-fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) requires dynamic acquisition with arterial input function, more practical semi-quantitative (static) approaches are often preferred. However, static standardized uptake values (SUV) are typically biased due to large variations in body weight (BW) occurring over time in animal studies. This study aims to improve static [18F]FDG PET SUV quantification by better accounting for BW variations in rats. We performed dynamic [18F]FDG PET imaging with arterial blood sampling in rats (n = 27) with different BW (range 0.230-0.487 kg). By regressing the area under the curve of the input function divided by injected activity against BW (r2=0.697), we determined a conversion factor f(BW) to be multiplied with SUV and SUVglc to obtain ratSUV and ratSUVglc, providing an improved estimate of the net influx rate Ki (r = 0.758, p<0.0001) and cerebral metabolic rate of glucose MRglc (r = 0.906, p<0.0001), respectively. In conclusion, the proposed ratSUV and ratSUVglc provide a proxy for the Ki and MRglc based on a single static [18F]FDG PET SUV measurement improving clinical significance and translation of rodent studies. Given a defined strain, sex, age, diet, and weight range, this method is applicable for future experiments by converting SUV with the derived f(BW).


Assuntos
Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Peso Corporal/fisiologia , Encéfalo/diagnóstico por imagem , Masculino , Ratos , Ratos Sprague-Dawley
4.
Neuroimage ; 191: 560-567, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30831313

RESUMO

Awake rat brain positron emission tomography (PET) has previously been developed to avoid the influence of anesthesia on the rat brain response. In the present work, we further the awake rat brain scanning methodology to establish simultaneous scanning of two interacting rats in a high resolution, large field of view PET scanner. Awake rat imaging methodology based on point source tracking was adapted to be used in a dedicated human brain scanner, the ECAT high resolution research tomograph (HRRT). Rats could freely run on a horizontal platform of 19.4 × 23 cm placed inside the HRRT. The developed methodology was validated using a motion resolution phantom experiment, 3 awake single rat [18F]FDG scans as well as an [18F]FDG scan of 2 interacting rats. The precision of the point source based motion tracking was 0.359 mm (standard deviation). Minor loss of spatial resolution was observed in the motion corrected reconstructions (MC) of the resolution phantom compared to the motion-free reconstructions (MF). The full-width-at-half-maximum of the phantom rods were increased by on average 0.37 mm in the MC compared to the MF. During the awake scans, extensive motion was observed with rats moving throughout the platform area. The average rat head motion speed was 1.69 cm/s. Brain regions such as hippocampus, cortex and cerebellum could be recovered in the motion corrected reconstructions. Relative regional brain uptake of MC and MF was strongly correlated (Pearson's r ranging from 0.82 to 0.95, p < 0.0001). Awake rat brain PET imaging of interacting rats was successfully implemented on the HRRT scanner. The present method allows a large range of motion throughout a large field of view as well as to image two rats simultaneously opening the way to novel rat brain PET study designs.


Assuntos
Encéfalo/fisiologia , Neuroimagem/instrumentação , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Animais , Movimento (Física) , Ratos , Vigília
5.
Neuromodulation ; 19(5): 459-68, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26846605

RESUMO

OBJECTIVES: This study characterizes and validates a recently developed dedicated circular rat coil for small animal repetitive Transcranial Magnetic Stimulation (rTMS). MATERIALS AND METHODS: The electric (E) field distribution was calculated in a three-dimensional (3D) spherical rat head model and coil cooling performance was characterized. Motor threshold (MT) in rats (n = 12) was determined using two current directions, MT variability (n = 16) and laterality (n = 11) of the stimulation was assessed. Finally, 2-deoxy-2-((18) F)fluoro-D-glucose ([(18) F]-FDG) small animal Positron Emission Tomography (µPET) after sham and 1, 10, and 50 Hz rTMS stimulation (n = 9) with the new Cool-40 Rat Coil (MagVenture, Denmark) was performed. RESULTS: The coil could produce high E-fields of maximum 220 V/m and more than 100 V/m at depths up to 5.3 mm in a ring-shaped distribution. No lateralization of stimulation was observed. Independent of the current direction, reproducible MT measurements were obtained at low percentages (27 ± 6%) of the maximum machine output (MO, MagPro X100 [MagVenture, Denmark]). At this intensity, rTMS with long pulse trains is feasible (1 Hz: continuous stimulation; 5 Hz: 1000 pulses; 10 Hz and 50 Hz: 272 pulses). When compared to sham, rTMS at different frequencies induced decreases in [(18) F]-FDG-uptake bilaterally mainly in dorsal cortical regions (visual, retrosplenial, and somatosensory cortices) and increases mainly in ventral regions (entorhinal cortex and amygdala). CONCLUSION: The coil is suitable for rTMS in rats and achieves unprecedented high E-fields at high stimulation frequencies and long durations with however a rather unfocal rat brain stimulation. Reproducible MEPs as well as alterations in cerebral glucose metabolism following rTMS were demonstrated.


Assuntos
Encéfalo/fisiologia , Atividade Motora/fisiologia , Estimulação Magnética Transcraniana/métodos , Animais , Biofísica , Encéfalo/diagnóstico por imagem , Lateralidade Funcional/fisiologia , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Tomógrafos Computadorizados
6.
J Cereb Blood Flow Metab ; : 271678X241239133, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684219

RESUMO

To prevent motion artifacts in small animal positron emission tomography (PET), animals are routinely scanned under anesthesia or physical restraint. Both may potentially alter metabolism and neurochemistry. This study investigates the feasibility of fully awake acquisition and subsequent absolute quantification of dynamic brain PET data via pharmacokinetic modelling in moving rats using the glutamate 5 receptor radioligand [11C]ABP688 and point source based motion correction. Five male rats underwent three dynamic [11C]ABP688 PET scans: two test-retest awake PET scans and one scan under anesthesia for comparison. Specific radioligand binding was determined via the simplified reference tissue model (reference: cerebellum) and outcome parameters BPND and R1 were evaluated in terms of stability and reproducibility. Test-retest measurements in awake animals gave reliable results with high correlations of BPND (y = 1.08 × -0.2, r = 0.99, p < 0.01) and an acceptable variability (mean over all investigated regions 15.7 ± 2.4%). Regional [11C]ABP688 BPNDs under awake and anesthetized conditions were comparable although in awake scans, absolute radioactive peak uptakes were lower and relative blood flow in terms of R1 was higher. Awake small animal PET with absolute quantification of neuroreceptor availability is technically feasible and reproducible thereby providing a suitable alternative whenever effects of anesthesia are undesirable, e.g. in sleep research.

7.
EJNMMI Phys ; 10(1): 78, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38052966

RESUMO

BACKGROUND: Kinetic modeling in positron emission tomography (PET) requires measurement of the tracer plasma activity in the absence of a suitable reference region. To avoid invasive blood sampling, the use of an image derived input function has been proposed. However, an accurate delineation of the blood pool region in the PET image is necessary to obtain unbiased blood activity. Here, to perform brain kinetic modeling in [18F]SynVesT-1 dynamic scans, we make use of non-negative matrix factorization (NMF) to unmix the activity signal from the different tissues that can contribute to the heart region activity, and extract only the left ventricle activity in an unbiased way. This method was implemented in dynamic [18F]SynVesT-1 scans of mice anesthetized with either isoflurane or ketamine-xylazine, two anesthestics that we showed to affect differently radiotracer kinetics. The left ventricle activity (NMF-IDIF) and a manually delineated cardiac activity (IDIF) were compared with arterial blood samples (ABS), and for isoflurane anesthetized mice, arteriovenous (AV) shunt blood data were compared as well. Finally, brain regional 2 tissue compartment modeling was performed using IDIF and NMF-IDIF, and the model fit accuracy (weighted symmetrical mean absolute percentage error, wsMAPE) as well as the total volume of distribution (VT) were compared. RESULTS: In isoflurane anesthetized mice, the difference between ABS and NMF-IDIF activity (+ 12.8 [Formula: see text] 11%, p = 0.0023) was smaller than with IDIF (+ 16.4 [Formula: see text] 9.8%, p = 0.0008). For ketamine-xylazine anesthetized mice the reduction in difference was larger (NMF-IDIF: 16.9 [Formula: see text] 10%, p = 0.0057, IDIF: 56.3 [Formula: see text] 14%, p < 0.0001). Correlation coefficient between isoflurane AV-shunt time activity curves and NMF-IDIF (0.97 [Formula: see text] 0.01) was higher than with IDIF (0.94 [Formula: see text] 0.03). The brain regional 2TCM wsMAPE was improved using NMF-IDIF compared with IDIF, in isoflurane (NMF-IDIF: 1.24 [Formula: see text] 0.24%, IDIF: 1.56 [Formula: see text] 0.30%) and ketamine-xylazine (NMF-IDIF: 1.40 [Formula: see text] 0.24, IDIF: 2.62 [Formula: see text] 0.27) anesthetized mice. Finally, brain VT was significantly (p < 0.0001) higher using NMF-IDIF compared with IDIF, in isoflurane (3.97 [Formula: see text] 0.13% higher) and ketamine-xylazine (32.7 [Formula: see text] 2.4% higher) anesthetized mice. CONCLUSIONS: Image derived left ventricle blood activity calculated with NMF improves absolute activity quantification, and reduces the error in the kinetic modeling fit. These improvements are more pronounced in ketamine-xylazine than in isoflurane anesthetized mice.

8.
J Cereb Blood Flow Metab ; 43(9): 1612-1624, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37113068

RESUMO

We investigated the effect of isoflurane and ketamine-xylazine anesthesia on the positron emission tomography (PET) tracer [18F]SynVesT-1 in the mouse brain. [18F]SynVesT-1 PET scans were performed in C57BL/6J mice in five conditions: isoflurane anesthesia (ANISO), ketamine-xylazine (ANKX), awake freely moving (AW), awake followed by isoflurane administration (AW/ANISO) or followed by ketamine-xylazine (AW/ANKX) 20 min post tracer injection. ANISO, ANKX and AW scans were also performed in mice administered with levetiracetam (LEV, 200 mg/kg) to assess non-displaceable binding. Metabolite analysis was performed in ANISO, ANKX and AW mice. Finally, in vivo autoradiography in ANISO, ANKX and AW mice at 30 min post-injection was performed for validation. Kinetic modeling, with a metabolite corrected image derived input function, was performed to calculate total and non-displaceable volume of distribution (VT(IDIF)). VT(IDIF) was higher in ANISO compared to AW (p < 0.0001) while VT(IDIF) in ANKX was lower compared with AW (p < 0.0001). Non-displaceable VT(IDIF) was significantly different between ANISO and AW, but not between ANKX and AW. Change in the TAC washout was observed after administration of either isoflurane or ketamine-xylazine. Observed changes in tracer kinetics and volume of distribution might be explained by physiological changes due to anesthesia, as well as by induced cellular effects.


Assuntos
Isoflurano , Ketamina , Animais , Camundongos , Ketamina/farmacologia , Ketamina/metabolismo , Isoflurano/farmacologia , Xilazina/farmacologia , Xilazina/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo
9.
Phys Med Biol ; 68(17)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37524092

RESUMO

Objective. In positron emission tomography (PET) rigid motion correction, erroneous tracking information translates into reduced quality in motion corrected reconstructions. We aim to improve the accuracy of the motion tracking data, to improve the quality of motion corrected reconstructions.Approach. We developed a method for correction of marker/skin displacement over the skull, for tracking methods which require multiple markers attached on the subject head. Additionally, we correct for small magnitude (∼1-2 mm) residual translation tracking errors that can still be present after other corrections. We performed [18F]FDG scans in awake mice (n= 8) and rats (n= 8), and dynamic [18F]SynVesT-1 scans in awake mice (n= 8). Head tracking was performed with the point source tracking method, attaching 3-4 radioactive fiducial markers on the animals' heads. List-mode even-by-event motion correction reconstruction was performed using tracking data obtained from the point source tracking method (MC), tracking data corrected for marker displacement (MC-DC), and tracking data with additional correction for residual translation tracking errors (MC-DCT). Image contrast, and the image enhancement metric (IEM, with MC as reference) were calculated in these 3 reconstructions.Main results. In mice [18F]FDG scans, the contrast increased on average 3% from MC to MC-DC (IEM: 1.01), and 5% from MC to MC-DCT (IEM: 1.02). For mice [18F]SynVesT-1 scans the contrast increased 6% from MC to MC-DC (IEM: 1.03), and 7% from MC to MC-DCT (IEM: 1.05). In rat [18F]FDG scans contrast increased 5% (IEM: 1.04), and 9% (IEM: 1.05), respectively.Significance. The methods presented here serve to correct motion tracking errors in PET brain scans, which translates into improved image quality in motion corrected reconstructions.

10.
EJNMMI Radiopharm Chem ; 8(1): 8, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37093350

RESUMO

BACKGROUND: CD70-CD27 is a costimulatory ligand-receptor pair in the tumor necrosis factor receptor family. With only limited expression in normal tissues, CD70 is constitutively expressed in a variety of solid tumors and hematologic malignancies, facilitating immunosuppression through CD27 signaling in the tumor microenvironment by enhanced survival of regulatory T cells, induction of T cell apoptosis, and T cell exhaustion. Consequently, CD70 is an increasingly recognized target for developing antibody-based therapies, but its expression patterns vary among different tumor types in spatial distribution, magnitude of expression and percentage of positive cells. In that regard, individual confirmation of CD70 expression at screening and during treatment could enhance the successful implementation of anti-CD70 therapies. Here, we developed a gallium-68 (68Ga) radiolabeled single-domain antibody-fragment targeting CD70 for in vivo positron emission tomography (PET) imaging. RESULTS: An anti-CD70 VHH construct containing a C-direct-tag with a free thiol was developed to enable site-specific conjugation to a NOTA bifunctional chelator for 68Ga radiolabeling. [68Ga]Ga-NOTA-anti-CD70 VHH was obtained in good radiochemical yield of 30.4 ± 1.7% and high radiochemical purity (> 94%). The radiolabeled VHH showed excellent in vitro and in vivo stability. Specific binding of [68Ga]Ga-NOTA-anti-CD70 VHH was observed on CD70high 786-O cells, showing significantly higher cell-associated activity when compared to the blocking condition (p < 0.0001) and CD70low NCl-H1975 cells (p < 0.0001). PET imaging showed specific radiotracer accumulation in CD70 expressing human tumor xenografts, which was efficiently blocked by prior injection of unlabeled anti-CD70 VHH (p = 0.0029). In addition, radiotracer uptake in CD70high tumors was significantly higher when compared with CD70low tumors (p < 0.0001). The distribution of the radioactivity in the tumors using autoradiography was spatially matched with immunohistochemistry analysis of CD70 expression. CONCLUSION: [68Ga]Ga-NOTA-anti-CD70 VHH showed excellent in vivo targeting of CD70 in human cancer xenografts. PET imaging using this radioimmunoconjugate holds promise as a non-invasive method to identify and longitudinally follow-up patients who will benefit most from anti-CD70 therapies.

11.
Front Neurosci ; 16: 901091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645721

RESUMO

The linear parametric neurotransmitter positron emission tomography (lp-ntPET) kinetic model can be used to detect transient changes (activation) in endogenous neurotransmitter levels. Preclinical PET scans in awake animals can be performed to investigate neurotransmitter transient changes. Here we use the spatiotemporal kernel reconstruction (Kernel) for noise reduction in dynamic PET, and lp-ntPET kinetic modeling. Kernel is adapted for motion correction reconstruction, applied in awake rat PET scans. We performed 2D rat brain phantom simulation using the ntPET model at 3 different noise levels. Data was reconstructed with independent frame reconstruction (IFR), IFR with HYPR denoising, and Kernel, and lp-ntPET kinetic parameters (k 2a : efflux rate, γ: activation magnitude, t d : activation onset time, and t p : activation peak time) were calculated. Additionally, significant activation magnitude (γ) difference with respect to a region with no activation (rest) was calculated. Finally, [11C]raclopride experiments were performed in anesthetized and awake rats, injecting cold raclopride at 20 min after scan start to simulate endogenous neurotransmitter release. For simulated data at the regional level, IFR coefficient of variation (COV) of k 2a , γ, t d and t p was reduced with HYPR denoising, but Kernel showed the lowest COV (2 fold reduction compared with IFR). At the pixel level the same trend is observed for k 2a , γ, t d and t p COV, but reduction is larger with Kernel compared with IFR (10-14 fold). Bias in γ with respect with noise-free values was additionally reduced using Kernel (difference of 292, 72.4, and -6.92% for IFR, IFR+KYPR, and Kernel, respectively). Significant difference in activation between the rest and active region could be detected at a simulated activation of 160% for IFR and IFR+HYPR, and of 120% for Kernel. In rat experiments, lp-ntPET parameters have better confidence intervals using Kernel. In the γ, and t d parametric maps, the striatum structure can be identified with Kernel but not with IFR. Striatum voxel-wise γ, t d and t p values have lower variability using Kernel compared with IFR and IFR+HYPR. The spatiotemporal kernel reconstruction adapted for motion correction reconstruction allows to improve lp-ntPET kinetic modeling noise in awake rat studies, as well as detection of subtle neurotransmitter activations.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34856382

RESUMO

BACKGROUND: This study provides a first direct comparison between positron emission tomography radioligands targeting the allosteric site of the metabotropic glutamate receptor 5 (mGluR5): [11C]ABP688 and [18F]FPEB. A blocking paradigm was set up to substantiate the common binding site of both radioligands. Second, both radioligands were applied in Sapap3 knockout (KO) mice showing compulsive-like behavior characterized by a lower in vivo mGluR5 availability. METHODS: First, wild-type mice (n = 7) received four position emission tomography/computed tomography scans: a [11C]ABP688 scan, a [18F]FPEB scan, and two blocking scans using cold FPEB and cold ABP688, respectively. A second experiment compared both radioligands in wild-type (n = 7) and KO (n = 10) mice. The simplified reference tissue model was used to calculate the nondisplaceable binding potential representing the in vivo availability of mGluR5 in the brain. RESULTS: Using cold FPEB as a blocking compound for [11C]ABP688 micro-positron emission tomography and vice versa, we observed averaged global reductions in mGluR5 availability of circa 98% for [11C]ABP688 and 82%-96% for [18F]FPEB. For KOs, the [11C]ABP688 nondisplaceable binding potential was on average 25% lower compared with wild-type control mice (p < .0001-.001), while this was about 17% for [18F]FPEB (p < .05). CONCLUSIONS: The current findings substantiate a common binding site and suggest a strong relationship between mGluR5 availability levels measured with both radioligands. In Sapap3 KO mice, a reduced mGluR5 availability could therefore be demonstrated with both radioligands. With [11C]ABP688, higher significance levels were achieved in more brain regions. These findings suggest [11C]ABP688 as a preferable radiotracer to quantify mGluR5 availability, as exemplified here in a model for compulsive-like behavior.


Assuntos
Transtorno Obsessivo-Compulsivo , Receptor de Glutamato Metabotrópico 5 , Animais , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso , Oximas , Tomografia por Emissão de Pósitrons/métodos , Piridinas , Receptor de Glutamato Metabotrópico 5/metabolismo
13.
J Cereb Blood Flow Metab ; 42(10): 1867-1878, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35570828

RESUMO

Alterations in synaptic vesicle glycoprotein 2 A (SV2A) have been associated with several neuropsychiatric and neurodegenerative disorders. Therefore, SV2A positron emission tomography (PET) imaging may provide a unique tool to investigate synaptic density dynamics during disease progression and after therapeutic intervention. This study aims to extensively characterize the novel radioligand [18F]SynVesT-1 for preclinical applications. In C57Bl/6J mice (n = 39), we assessed the plasma profile of [18F]SynVesT-1, validated the use of a noninvasive image-derived input function (IDIF) compared to an arterial input function (AIF), performed a blocking study with levetiracetam (50 and 200 mg/kg, i.p.) to verify the specificity towards SV2A, examined kinetic models for volume of distribution (VT) quantification, and explored test-retest reproducibility of [18F]SynVesT-1 in the central nervous system (CNS). Plasma availability of [18F]SynVesT-1 decreased rapidly (13.4 ± 1.5% at 30 min post-injection). VT based on AIF and IDIF showed excellent agreement (r2 = 0.95, p < 0.0001) and could be reliably estimated with a 60-min acquisition. The blocking study resulted in a complete blockade with no suitable reference region. Test-retest analysis indicated good reproducibility (mean absolute variability <10%). In conclusion, [18F]SynVesT-1 is selective for SV2A with optimal kinetics representing a candidate tool to quantify CNS synaptic density non-invasively.


Assuntos
Encéfalo , Vesículas Sinápticas , Animais , Encéfalo/metabolismo , Glicoproteínas/metabolismo , Levetiracetam , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Reprodutibilidade dos Testes , Vesículas Sinápticas/metabolismo
14.
J Nucl Med ; 63(6): 942-947, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34531262

RESUMO

Synaptic dysfunction is a primary mechanism underlying Huntington disease (HD) progression. This study investigated changes in synaptic vesicle glycoprotein 2A (SV2A) density by means of 11C-UCB-J small-animal PET imaging in the central nervous system of mice with HD. Methods: Dynamic 11C-UCB-J small-animal PET imaging was performed at clinically relevant disease stages (at 3, 7, 10, and 16 mo) in the heterozygous knock-in Q175DN mouse model of HD and wild-type littermates (16-18 mice per genotype and time point). Cerebral 11C-UCB-J analyses were performed to assess genotypic differences during presymptomatic (3 mo) and symptomatic (7-16 mo) disease stages. 11C-UCB-J binding in the spinal cord was quantified at 16 mo. 3H-UCB-J autoradiography and SV2A immunofluorescence were performed postmortem in mouse and human brain tissues. Results:11C-UCB-J binding was lower in symptomatic heterozygous mice than in wild-type littermates in parallel with disease progression (7 and 10 mo: P < 0.01; 16 mo: P < 0.0001). Specific 11C-UCB-J binding was detectable in the spinal cord, with symptomatic heterozygous mice displaying a significant reduction (P < 0.0001). 3H-UCB-J autoradiography and SV2A immunofluorescence corroborated the in vivo measurements demonstrating lower SV2A in heterozygous mice (P < 0.05). Finally, preliminary analysis of SV2A in the human brain postmortem suggested lower SV2A in HD gene carriers than in controls without dementia. Conclusion:11C-UCB-J PET detected SV2A deficits during symptomatic disease in heterozygous mice in both the brain and the spinal cord and therefore may be suitable as a novel marker of synaptic integrity widely distributed in the central nervous system. On clinical application, 11C-UCB-J PET imaging may have promise for SV2A measurement in patients with HD during disease progression and after disease-modifying therapeutic strategies.


Assuntos
Doença de Huntington , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Progressão da Doença , Humanos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Piridinas/metabolismo , Vesículas Sinápticas/metabolismo
15.
Sci Transl Med ; 14(630): eabm3682, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108063

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin (HTT) gene that encodes the pathologic mutant HTT (mHTT) protein with an expanded polyglutamine (polyQ) tract. Whereas several therapeutic programs targeting mHTT expression have advanced to clinical evaluation, methods to visualize mHTT protein species in the living brain are lacking. Here, we demonstrate the development and characterization of a positron emission tomography (PET) imaging radioligand with high affinity and selectivity for mHTT aggregates. This small molecule radiolabeled with 11C ([11C]CHDI-180R) allowed noninvasive monitoring of mHTT pathology in the brain and could track region- and time-dependent suppression of mHTT in response to therapeutic interventions targeting mHTT expression in a rodent model. We further showed that in these animals, therapeutic agents that lowered mHTT in the striatum had a functional restorative effect that could be measured by preservation of striatal imaging markers, enabling a translational path to assess the functional effect of mHTT lowering.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Doença de Huntington/metabolismo , Ligantes , Doenças Neurodegenerativas/patologia
16.
Front Med (Lausanne) ; 8: 753977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746189

RESUMO

Preclinical brain positron emission tomography (PET) in animals is performed using anesthesia to avoid movement during the PET scan. In contrast, brain PET scans in humans are typically performed in the awake subject. Anesthesia is therefore one of the principal limitations in the translation of preclinical brain PET to the clinic. This review summarizes the available literature supporting the confounding effect of anesthesia on several PET tracers for neuroscience in preclinical small animal scans. In a second part, we present the state-of-the-art methodologies to circumvent this limitation to increase the translational significance of preclinical research, with an emphasis on motion correction methods. Several motion tracking systems compatible with preclinical scanners have been developed, each one with its advantages and limitations. These systems and the novel experimental setups they can bring to preclinical brain PET research are reviewed here. While technical advances have been made in this field, and practical implementations have been demonstrated, the technique should become more readily available to research centers to allow for a wider adoption of the motion correction technique for brain research.

17.
Phys Med Biol ; 66(11)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33906176

RESUMO

Depending on the molar activity of the tracer, the maximal allowable injected activity in mouse brain PET studies can be extremely low in order to avoid receptor saturation. Therefore, a high level of noise can be present in the image. We investigate several dynamic PET reconstruction methods in reduced counts, or equivalently in reduced injected activity, data exemplified in [11C]racloprideBPNDandR1quantification using the simplified reference tissue model (SRTM). We compared independent frame reconstruction (IFR), post-reconstruction HYPR denoising (IFR + HYPR), direct reconstruction using the SRTM model (DIR-SRTM), and the spatial (KERS) and spatiotemporal kernel reconstruction (KERST). Additionally, HYPR denoising of the frames used as features for the calculation of the spatial kernel matrix, was investigated (KERS-HYPR and KERST-HYPR).In vivodata of 11 mice, was used to generate list-mode data for five reduced count levels corresponding to reductions by a factor 4, 8, 12, 16 and 32 (equivalently 2.07, 1.04, 0.691, 0.518, and 0.260 MBq). Correlation of regionalBPNDandR1values (reduced versus full counts reconstructions) was high (r > 0.94) for all methods, with KERS-HYPR and KERST-HYPR reaching the highest correlation (r > 0.96). Among methods with regularization, DIR-SRTM showed the largest variability inBPND(Bland-Altman SD from 3.0% to 12%), while IFR showed it forR1(5.1%-14.6%). KERST and KERST-HYPR were the only methods with Bland-Altman bias and SD below 5% for noise level up to a reduction factor of 16. At the voxel level,BPNDandR1correlation was gradually decreased with increasing noise, with the largest correlation (BPNDr > 0.88,R1r > 0.62) for KERS-HYPR and KERST-HYPR. The spatial and the spatiotemporal kernel methods performed similarly, while using only temporal regularization with direct reconstruction showed more variability. AlthoughR1 values present noise, using the spatiotemporal kernel reconstruction, accurate estimates of binding potential could be obtained with mouse injected activities as low as 0.26-0.518 MBq. This is desirable in order to maintain the tracer kinetics principle in mouse studies.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Cinética , Camundongos , Racloprida
18.
Mol Imaging Biol ; 23(2): 208-219, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33179158

RESUMO

PURPOSE: Our aim in this study was to compare different non-invasive pharmacokinetic models and assess test-retest reproducibility of the radioligand [11C]SCH23390 for the quantification of dopamine D1-like receptor (D1R) in both wild-type (WT) mice and heterozygous (HET) Q175DN mice as Huntington's disease (HD) model. PROCEDURES: Adult WT (n = 9) and HET (n = 14) mice underwent a 90-min [11C]SCH23390 positron emission tomography (PET) scan followed by computed tomography (CT) to evaluate the pharmacokinetic modelling in healthy and diseased conditions. Additionally, 5 WT mice and 7 HET animals received a second [11C]SCH23390 PET scan for test-retest reproducibility. Parallel assessment of the simplified reference tissue model (SRTM), the multilinear reference tissue model (MRTM) and the Logan reference tissue model (Logan Ref) using the striatum as a receptor-rich region and the cerebellum as a receptor-free (reference) region was performed to define the most suitable method for regional- and voxel-based quantification of the binding potential (BPND). Finally, standardised uptake value ratio (SUVR-1) was assessed as a potential simplified measurement. RESULTS: For all models, we measured a significant decline in dopamine D1R density (e.g. SRTM = - 38.5 ± 5.0 %, p < 0.0001) in HET mice compared to WT littermates. Shortening the 90-min scan duration resulted in large underestimation of striatal BPND in both WT mice (SRTM 60 min: - 17.7 ± 2.8 %, p = 0.0078) and diseased HET (SRTM 60 min: - 13.1 ± 4.1 %, p = 0.0001). Striatal BPND measurements were very reproducible with an average test-retest variability below 5 % when using both MRTM and SRTM. Parametric BPND maps generated with SRTM were highly reliable, showing nearly perfect agreement to the regional analysis (r2 = 0.99, p < 0.0001). Finally, SRTM provided the most accurate estimate for relative tracer delivery R1 with both regional- and voxel-based analyses. SUVR-1 at different time intervals were not sufficiently reliable when compared to BPND (r2 < 0.66). CONCLUSIONS: Ninety-minute acquisition and the use of SRTM for pharmacokinetic modelling is recommended. [11C]SCH23390 PET imaging demonstrates optimal characteristics for the study of dopamine D1R density in models of psychiatric and neurological disorders as exemplified in the Q175DN mouse model of HD.


Assuntos
Benzazepinas/farmacocinética , Encéfalo/diagnóstico por imagem , Doença de Huntington/diagnóstico por imagem , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Receptores de Dopamina D1/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Radioisótopos de Carbono , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Receptores de Dopamina D1/metabolismo , Reprodutibilidade dos Testes , Distribuição Tecidual
19.
IEEE Trans Med Imaging ; 39(7): 2518-2530, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32070945

RESUMO

Recent advances in positron emission tomography (PET) have allowed to perform brain scans of freely moving animals by using rigid motion correction. One of the current challenges in these scans is that, due to the PET scanner spatially variant point spread function (SVPSF), motion corrected images have a motion dependent blurring since animals can move throughout the entire field of view (FOV). We developed a method to calculate the image-based resolution kernels of the motion dependent and spatially variant PSF (MD-SVPSF) to correct the loss of spatial resolution in motion corrected reconstructions. The resolution kernels are calculated for each voxel by sampling and averaging the SVPSF at all positions in the scanner FOV where the moving object was measured. In resolution phantom scans, the use of the MD-SVPSF resolution model improved the spatial resolution in motion corrected reconstructions and corrected the image deformation caused by the parallax effect consistently for all motion patterns, outperforming the use of a motion independent SVPSF or Gaussian kernels. Compared to motion correction in which the SVPSF is applied independently for every pose, our method performed similarly, but with more than two orders of magnitude faster computation time. Importantly, in scans of freely moving mice, brain regional quantification in motion-free and motion corrected images was better correlated when using the MD-SVPSF in comparison with motion independent SVPSF and a Gaussian kernel. The method developed here allows to obtain consistent spatial resolution and quantification in motion corrected images, independently of the motion pattern of the subject.


Assuntos
Algoritmos , Tomografia por Emissão de Pósitrons , Animais , Processamento de Imagem Assistida por Computador , Camundongos , Movimento (Física) , Neuroimagem , Imagens de Fantasmas
20.
Biomed Phys Eng Express ; 6(4): 045001, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33444262

RESUMO

In small animal positron emission tomography (PET) studies, given the spatial resolution of preclinical PET scanners, quantification in small regions can be challenging. Moreover, in scans where animals are placed away from the center of the field of view (CFOV), e.g. in simultaneous scans of multiple animals, quantification accuracy can be compromised due to the loss of spatial resolution towards the edge of the FOV. Here, we implemented a spatially variant resolution model to improve quantification in small regions and to allow simultaneous scanning of multiple animals without compromising quantification accuracy. The scanner's point spread function (PSF) was characterized across the FOV and modelled using a spatially variant and asymmetric Gaussian function. The spatially variant PSF (SVPSF) was then used for resolution modelling in the iterative reconstruction. To assess the image quality, a line source phantom in a cold and warm background, as well as mouse brain [18F]FDG scans, were performed. The SVPSF and the vendor's maximum a posteriori (MAP3D) reconstructions produced uniform spatial resolution across the scanner FOV, but MAP3D resulted in lower spatial resolution. The line sources recovery coefficient using SVPSF was similar at the CFOV and at the edge of the FOV. In contrast, the other tested reconstructions produced lower recovery coefficient at the edge of the FOV. In mouse brain reconstructions, less spill-over from hot regions to cold regions, as well as more symmetric regional brain uptake was observed using SVPSF. The contrast in brain images was the highest using SVPSF, in mice scanned at the CFOV and off-center. Incorporation of a spatially variant resolution model for small animal brain PET improves quantification accuracy in small regions and produces consistent image spatial resolution across the FOV. Therefore, simultaneous scanning of multiple animals can benefit by using spatially variant resolution modelling.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Animais , Animais de Laboratório , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador , Camundongos , Distribuição Normal , Imagens de Fantasmas , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA