Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R121-R133, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047314

RESUMO

Although Gaussian white noise (GWN) inputs offer a theoretical framework for identifying higher-order nonlinearity, an actual application to the data of the neural arc of the carotid sinus baroreflex did not succeed in fully predicting the well-known sigmoidal nonlinearity. In the present study, we assumed that the neural arc can be approximated by a cascade of a linear dynamic (LD) component and a nonlinear static (NS) component. We analyzed the data obtained using GWN inputs with a mean of 120 mmHg and standard deviations (SDs) of 10, 20, and 30 mmHg for 15 min each in anesthetized rats (n = 7). We first estimated the linear transfer function from carotid sinus pressure to sympathetic nerve activity (SNA) and then plotted the measured SNA against the linearly predicted SNA. The predicted and measured data pairs exhibited an inverse sigmoidal distribution when grouped into 10 bins based on the size of the linearly predicted SNA. The sigmoidal nonlinearity estimated via the LD-NS model showed a midpoint pressure (104.1 ± 4.4 mmHg for SD of 30 mmHg) lower than that estimated by a conventional stepwise input (135.8 ± 3.9 mmHg, P < 0.001). This suggests that the NS component is more likely to reflect the nonlinearity observed during pulsatile inputs that are physiological to baroreceptors. Furthermore, the LD-NS model yielded higher R2 values compared with the linear model and the previously suggested second-order Uryson model in the testing dataset.NEW & NOTEWORTHY We examined the input-size dependence of the baroreflex neural arc transfer characteristics during Gaussian white noise inputs. A linear dynamic-static nonlinear model yielded higher R2 values compared with a linear model and captured the well-known sigmoidal nonlinearity of the neural arc, indicating that the nonlinear dynamics contributed to determining sympathetic nerve activity. Ignoring such nonlinear dynamics might reduce our ability to explain underlying physiology and significantly limit the interpretation of experimental data.


Assuntos
Barorreflexo , Pressorreceptores , Ratos , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Pressorreceptores/fisiologia , Sistema Nervoso Simpático/fisiologia , Seio Carotídeo/inervação
2.
Am J Physiol Heart Circ Physiol ; 320(6): H2201-H2210, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33891515

RESUMO

Our previous study indicated that intravenously administered ivabradine (IVA) augmented the dynamic heart rate (HR) response to moderate-intensity vagal nerve stimulation (VNS). Considering an accentuated antagonism, the results were somewhat paradoxical; i.e., the accentuated antagonism indicates that an activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels via the accumulation of intracellular cyclic adenosine monophosphate (cAMP) augments the HR response to VNS, whereas the inhibition of HCN channels by IVA also augmented the HR response to VNS. To remove the possible influence from the accentuated antagonism, we examined the effects of IVA on the dynamic vagal control of HR under ß-blockade. In anesthetized rats (n = 7), the right vagal nerve was stimulated for 10 min according to binary white noise signals between 0 and 10 Hz (V0-10), between 0 and 20 Hz (V0-20), and between 0 and 40 Hz (V0-40). The transfer function from VNS to HR was estimated. Under ß-blockade (propranolol, 2 mg/kg iv), IVA (2 mg/kg iv) did not augment the asymptotic low-frequency gain but increased the asymptotic high-frequency gain in V0-10 (0.53 ± 0.10 vs. 1.74 ± 0.40 beats/min/Hz, P < 0.01) and V0-20 (0.79 ± 0.14 vs. 2.06 ± 0.47 beats/min/Hz, P < 0.001). These changes, which were observed under a minimal influence from sympathetic background tone, may reflect an increased contribution of the acetylcholine-sensitive potassium channel (IK,ACh) pathway after IVA, because the HR control via the IK,ACh pathway is faster and acts in the frequency range higher than the cAMP-mediated pathway.NEW & NOTEWORTHY Since ivabradine (IVA) inhibits hyperpolarization-activated cyclic nucleotide-gated channels, interactions among the sympathetic effect, vagal effect, and IVA can occur in the control of heart rate (HR). To remove the sympathetic effect, we estimated the transfer function from vagal nerve stimulation to HR under ß-blockade in anesthetized rats. IVA augmented the high-frequency dynamic gain during low- and moderate-intensity vagal nerve stimulation. Untethering the hyperpolarizing effect of acetylcholine-sensitive potassium channels after IVA may be a possible underlying mechanism.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Fármacos Cardiovasculares/farmacologia , Estimulação Elétrica , Frequência Cardíaca/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/efeitos dos fármacos , Ivabradina/farmacologia , Nervo Vago/fisiologia , Animais , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , AMP Cíclico/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Frequência Cardíaca/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Masculino , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Propranolol/farmacologia , Ratos
3.
Exp Physiol ; 106(9): 1922-1938, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34318560

RESUMO

NEW FINDINGS: What is the central question of this study? To what extent do hypoxia-induced changes in the peripheral and central respiratory chemoreflex modulate anterior and posterior cerebral oxygen delivery, with corresponding implications for susceptibility to acute mountain sickness? What is the main finding and its importance? We provide evidence for site-specific regulation of cerebral blood flow in hypoxia that preserves oxygen delivery in the posterior but not the anterior cerebral circulation, with minimal contribution from the central respiratory chemoreflex. External carotid artery vasodilatation might prove to be an alternative haemodynamic risk factor that predisposes to acute mountain sickness. ABSTRACT: The aim of the present study was to determine the extent to which hypoxia-induced changes in the peripheral and central respiratory chemoreflex modulate anterior and posterior cerebral blood flow (CBF) and oxygen delivery (CDO2 ), with corresponding implications for the pathophysiology of the neurological syndrome, acute mountain sickness (AMS). Eight healthy men were randomly assigned single blind to 7 h of passive exposure to both normoxia (21% O2 ) and hypoxia (12% O2 ). The peripheral and central respiratory chemoreflex, internal carotid artery, external carotid artery (ECA) and vertebral artery blood flow (duplex ultrasound) and AMS scores (questionnaires) were measured throughout. A reduction in internal carotid artery CDO2 was observed during hypoxia despite a compensatory elevation in perfusion. In contrast, vertebral artery and ECA CDO2 were preserved, and the former was attributable to a more marked increase in perfusion. Hypoxia was associated with progressive activation of the peripheral respiratory chemoreflex (P < 0.001), whereas the central respiratory chemoreflex remained unchanged (P > 0.05). Symptom severity in participants who developed clinical AMS was positively related to ECA blood flow (Lake Louise score, r = 0.546-0.709, P = 0.004-0.043; Environmental Symptoms Questionnaires-Cerebral symptoms score, r = 0.587-0.771, P = 0.001-0.027, n = 4). Collectively, these findings highlight the site-specific regulation of CBF in hypoxia that maintains CDO2 selectively in the posterior but not the anterior cerebral circulation, with minimal contribution from the central respiratory chemoreflex. Furthermore, ECA vasodilatation might represent a hitherto unexplored haemodynamic risk factor implicated in the pathophysiology of AMS.


Assuntos
Doença da Altitude , Doença Aguda , Circulação Cerebrovascular/fisiologia , Humanos , Hipóxia , Masculino , Oxigênio , Método Simples-Cego
4.
Exp Physiol ; 105(9): 1515-1523, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32700812

RESUMO

NEW FINDINGS: What is the central question of this study? What are the dynamic characteristics of cerebrovascular carbon dioxide reactivity and the central respiratory chemoreflex? What is the main finding and its importance? The transfer function gain from the end-tidal partial pressure of carbon dioxide to cerebral blood flow or ventilation decreased in the high frequency range at rest and during exercise. These findings indicate that the dynamic characteristics of both systems were not constant in all frequency ranges, and this trend was not modified by exercise. ABSTRACT: The purpose of this study was to examine the dynamic characteristics of cerebrovascular reactivity and ventilatory response to change in arterial CO2 in all frequency ranges at rest using frequency domain analysis, and also to examine whether this is modified by dynamic exercise as with the traditionally determined cerebrovascular CO2 reactivity. In nine healthy young subjects, at rest and during exercise (cycling exercise at constant predetermined work rate corresponding to a V̇O2 level of 0.90 l min-1 ), the dynamic characteristics of cerebrovascular CO2 reactivity and the central respiratory chemoreflex were assessed by transfer function analysis using a binary white-noise sequence (0-7% inspired CO2 fraction) from the end-tidal partial pressure of CO2 ( PETCO2 ) to the mean middle cerebral artery mean blood velocity (MCA Vm ) or minute ventilation ( V̇E ), respectively. In the high frequency range, both transfer function gains decreased but, interestingly, the cut-off frequency in the transfer function gain from PETCO2 to MCA Vm response was higher than that from PETCO2 to V̇E response at rest (0.024 vs. 0.015 Hz) and during exercise (0.030 vs. 0.011 Hz), indicating that cerebrovascular CO2 reactivity or central respiratory chemoreflex was not constant in all frequency ranges, and this trend was not modified by exercise. These findings suggest that dynamic characteristics of the cerebrovascular CO2 reactivity or central chemoreflex need to be assessed to identify the whole system because the traditional method cannot identify the property of time response of these systems.


Assuntos
Dióxido de Carbono/sangue , Circulação Cerebrovascular , Exercício Físico , Velocidade do Fluxo Sanguíneo , Humanos , Artéria Cerebral Média , Consumo de Oxigênio , Pressão Parcial , Adulto Jovem
5.
Exp Physiol ; 104(9): 1363-1370, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31264258

RESUMO

NEW FINDINGS: What is the central question of this study? There is an interaction between the regulatory systems of respiration and cerebral blood flow, because the mediator (CO2 ) is the same for both physiological systems. We examined whether the traditional method for determining cerebrovascular reactivity to CO2 is modified by changes in respiration. What is the main finding and its importance? Cerebrovascular reactivity was modified by voluntary changes in respiration during hypercapnia. This finding suggests that an alteration in the respiratory system may result in under- or overestimation of cerebrovascular reactivity determined by traditional methods in healthy adults. ABSTRACT: The cerebral vasculature is sensitive to changes in the arterial partial pressure of CO2 . This physiological mechanism has been well established as a cerebrovascular reactivity to CO2 (CVR). However, arterial CO2 may not be an independent variable in the traditional method for assessment of CVR, because the cerebral blood flow response is also affected by the activation of respiratory drive or higher centres in the brain. We hypothesized that CVR is modified by changes in respiration. To test our hypothesis, in the present study, 10 young, healthy subjects performed hyper- or hypoventilation to change end-tidal CO2 ( PET,CO2 ) with different concentrations of CO2 in the inhaled gas (0, 2.0 and 3.5%). We measured middle cerebral artery mean blood flow velocity by transcranial Doppler ultrasonography to identify the cerebral blood flow response to change in PET,CO2 during each set of conditions. In each set of conditions, PET,CO2 was significantly altered by changes in ventilation, and middle cerebral artery mean blood flow velocity changed accordingly. However, the relationship between changes in middle cerebral artery mean blood flow velocity and PET,CO2 as a response curve of CVR was reset upwards and downwards by hypo- and hyperventilation, respectively, compared with CVR during normal ventilation. The findings of the present study suggest the possibility that an alteration in respiration might lead to under- or overestimation of CVR determined by the traditional methods.


Assuntos
Dióxido de Carbono/metabolismo , Circulação Cerebrovascular/fisiologia , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/fisiopatologia , Adulto , Pressão Arterial/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Humanos , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Hiperventilação/metabolismo , Hiperventilação/fisiopatologia , Masculino , Pressão Parcial , Respiração , Ultrassonografia Doppler Transcraniana/métodos , Adulto Jovem
6.
Exp Physiol ; 103(5): 748-760, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509982

RESUMO

NEW FINDINGS: What is the central question of this study? The lack of useful small-animal models for studying exercise hyperpnoea makes it difficult to investigate the underlying mechanisms of exercise-induced ventilatory abnormalities in various disease states. What is the main finding and its importance? We developed an anaesthetized-rat model for studying exercise hyperpnoea, using a respiratory equilibrium diagram for quantitative characterization of the respiratory chemoreflex feedback system. This experimental model will provide an opportunity to clarify the major determinant mechanisms of exercise hyperpnoea, and will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models. ABSTRACT: Exercise-induced ventilatory abnormalities in various disease states seem to arise from pathological changes of respiratory regulation. Although experimental studies in small animals are essential to investigate the pathophysiological basis of various disease models, the lack of an integrated framework for quantitatively characterizing respiratory regulation during exercise prevents us from resolving these problems. The purpose of this study was to develop an anaesthetized-rat model for studying exercise hyperpnoea for quantitative characterization of the respiratory chemoreflex feedback system. In 24 anaesthetized rats, we induced muscle contraction by stimulating bilateral distal sciatic nerves at low and high voltage to mimic exercise. We recorded breath-by-breath respiratory gas analysis data and cardiorespiratory responses while running two protocols to characterize the controller and plant of the respiratory chemoreflex. The controller was characterized by determining the linear relationship between end-tidal CO2 pressure (P ETC O2) and minute ventilation (V̇E), and the plant by the hyperbolic relationship between V̇E and P ETC O2. During exercise, the controller curve shifted upward without change in controller gain, accompanying increased oxygen uptake. The hyperbolic plant curve shifted rightward and downward depending on exercise intensity as predicted by increased metabolism. Exercise intensity-dependent changes in operating points (V̇E and P ETC O2) were estimated by integrating the controller and plant curves in a respiratory equilibrium diagram. In conclusion, we developed an anaesthetized-rat model for studying exercise hyperpnoea, using systems analysis for quantitative characterization of the respiratory system. This novel experimental model will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models.


Assuntos
Hiperventilação/fisiopatologia , Condicionamento Físico Animal/fisiologia , Ventilação Pulmonar/fisiologia , Animais , Dióxido de Carbono/metabolismo , Masculino , Contração Muscular/fisiologia , Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley , Respiração , Corrida/fisiologia
7.
Clin Auton Res ; 26(1): 59-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26695399

RESUMO

PURPOSE: Acupuncture stimulation is known to act on the autonomic nervous system and elicits depressor and bradycardic effects. However, previous studies on humans did not conduct quantitative analyses on optimal acupuncture conditions such as the stimulation frequency and duration to achieve maximum depressor and bradycardic effects. The aim of the present study was to investigate the effects of varying stimulation frequencies of electroacupuncture on time-dependent changes in blood pressure and heart rate in humans. METHODS: Twelve healthy volunteers participated in the study. An acupuncture needle was inserted at the Ximen acupoint (PC4 according to WHO nomenclature), located at the anterior aspect of the forearm. An electrical stimulation was delivered through the acupuncture needle at an intensity of 1 V, pulse width of 5 ms, and stimulation frequencies of 0.5, 1, 5, and 10 Hz in a random order. The duration of electroacupuncture was 6 min, during which blood pressure and heart rate responses were monitored. RESULTS: Group-averaged data indicated that 1-Hz electroacupuncture decreased blood pressure and heart rate. Blood pressure was significantly decreased from the prestimulation baseline value of 86.6 ± 2.9 to 81.4 ± 2.3 mmHg during 4-6 min of 1-Hz electroacupuncture (mean ± SE, P < 0.01). Heart rate was also significantly decreased (from 66.2 ± 2.0 to 62.7 ± 1.7 beats/min, P < 0.01). CONCLUSIONS: These results provide fundamental evidence that bradycardiac and depressor responses are effectively produced by electrical acupuncture in humans.


Assuntos
Pressão Sanguínea/fisiologia , Eletroacupuntura/métodos , Frequência Cardíaca/fisiologia , Sistema Nervoso Autônomo/fisiologia , Bradicardia/fisiopatologia , Feminino , Humanos , Masculino , Adulto Jovem
8.
Exp Physiol ; 100(3): 259-66, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25641216

RESUMO

NEW FINDINGS: What is the central question of this study? Recently, the heterogeneity of the cerebral arterial circulation has been argued. Orthostatic tolerance may be associated with an orthostatic stress-induced change in blood flow in vertebral arteries rather than in internal carotid arteries, because vertebral arteries supply blood to the medulla oblongata, which is the location of important cardiac, vasomotor and respiratory control centres. What is the main finding and its importance? The effect of graded orthostatic stress on vertebral artery blood flow is different from that on internal carotid artery blood flow. This response allows for the possibility that orthostatic tolerance may be associated with haemodynamic changes in posterior rather than anterior cerebral blood flow. Recently, the heterogeneity of the cerebral arterial circulation has been argued, but the characteristics of vertebral artery (VA) and internal carotid artery (ICA) blood flow during graded orthostatic stress remain unknown. We hypothesized that the change in blood flow in VA is not similar to that in ICA blood flow during graded orthostatic stress. We measured blood flows in both ICA and VA during graded lower body negative pressure (LBNP; -20, -35 and -50 mmHg) by using two colour-coded ultrasound systems. The effect of graded orthostatic stress on the VA blood flow was different from that on the ICA blood flow (LBNP × artery, P = 0.006). The change in ICA blood flow was associated with the level of LBNP (r = 0.287, P = 0.029), and a reduction in ICA blood flow from pre-LBNP was observed during -50 mmHg LBNP (from 411 ± 35 to 311 ± 40 ml min(-1) , P = 0.044) without symptoms of presyncope. In contrast, VA blood flow was unchanged during graded LBNP compared with the baseline (P = 0.597) relative to the reduction in ICA blood flow and thus there was no relationship between VA blood flow and the level of LBNP (r = 0.167, P = 0.219). These findings suggest that the change in ICA blood flow is due to the level of LBNP during graded orthostatic stress, but the change in VA blood flow is different from that in ICA blood flow across the different levels of LBNP. These findings provide the possibility that posterior cerebral blood flow decreases only during severe orthostatic stress and is therefore more likely to be linked with orthostatic tolerance.


Assuntos
Artéria Carótida Interna/fisiologia , Circulação Cerebrovascular/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Artéria Vertebral/fisiologia , Adulto , Feminino , Humanos , Pressão Negativa da Região Corporal Inferior/métodos , Masculino , Síncope/fisiopatologia , Adulto Jovem
9.
Am J Physiol Heart Circ Physiol ; 306(12): H1669-78, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24778171

RESUMO

The respiratory operating point (ventilatory or arterial PCO2 response) is determined by the intersection point between the controller and plant subsystem elements within the respiratory control system. However, to what extent changes in central blood volume (CBV) influence these two elements and the corresponding implications for the respiratory operating point remain unclear. To examine this, 17 apparently healthy male participants were exposed to water immersion (WI) or lower body negative pressure (LBNP) challenges to manipulate CBV and determine the corresponding changes. The respiratory controller was characterized by determining the linear relationship between end-tidal PCO2 (PetCO2 ) and minute ventilation (Ve) [Ve = S × (PetCO2 - B)], whereas the plant was determined by the hyperbolic relationship between Ve and PetCO2 (PetCO2 = A/Ve + C). Changes in Ve at the operating point were not observed under either WI or LBNP conditions despite altered PetCO2 (P < 0.01), indicating a moving respiratory operating point. An increase (WI) and a decrease (LBNP) in CBV were shown to reset the controller element (PetCO2 intercept B) rightward and leftward, respectively (P < 0.05), without any change in S, whereas the plant curve remained unaltered at the operating point. Collectively, these findings indicate that modification of the controller element rather than the plant element is the major factor that contributes toward an alteration of the respiratory operating point during CBV shifts.


Assuntos
Volume Sanguíneo/fisiologia , Dióxido de Carbono/metabolismo , Hemodinâmica/fisiologia , Mecânica Respiratória/fisiologia , Adolescente , Adulto , Humanos , Imersão/fisiopatologia , Pressão Negativa da Região Corporal Inferior , Masculino , Ventilação Pulmonar/fisiologia , Volume de Ventilação Pulmonar/fisiologia , Adulto Jovem
10.
Exp Physiol ; 99(6): 849-58, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24632495

RESUMO

In normoxic conditions, a reduction in arterial carbon dioxide tension causes cerebral vasoconstriction, thereby reducing cerebral blood flow and modifying dynamic cerebral autoregulation (dCA). It is unclear to what extent these effects are altered by acute hypoxia and the associated hypoxic ventilatory response (respiratory chemoreflex). This study tested the hypothesis that acute hypoxia attenuates arterial CO2 tension-mediated regulation of cerebral blood flow to help maintain cerebral O2 homeostasis. Eight subjects performed three randomly assigned respiratory interventions following a resting baseline period, as follows: (1) normoxia (21% O2); (2) hypoxia (12% O2); and (3) hypoxia with wilful restraint of the respiratory chemoreflex. During each intervention, 0, 2.0, 3.5 or 5.0% CO2 was sequentially added (8 min stages) to inspired gas mixtures to assess changes in steady-state cerebrovascular CO2 reactivity and dCA. During normoxia, the addition of CO2 increased internal carotid artery blood flow and middle cerebral artery mean blood velocity (MCA Vmean), while reducing dCA (change in phase = -0.73 ± 0.22 rad, P = 0.005). During acute hypoxia, internal carotid artery blood flow and MCA Vmean remained unchanged, but cerebrovascular CO2 reactivity (internal carotid artery, P = 0.003; MCA Vmean, P = 0.031) and CO2-mediated effects on dCA (P = 0.008) were attenuated. The effects of hypoxia were not further altered when the respiratory chemoreflex was restrained. These findings support the hypothesis that arterial CO2 tension-mediated effects on the cerebral vasculature are reduced during acute hypoxia. These effects could limit the degree of hypocapnic vasoconstriction and may help to regulate cerebral blood flow and cerebral O2 homeostasis during acute periods of hypoxia.


Assuntos
Dióxido de Carbono/administração & dosagem , Dióxido de Carbono/sangue , Circulação Cerebrovascular/fisiologia , Frequência Cardíaca/fisiologia , Hipóxia/sangue , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Humanos , Hipóxia/fisiopatologia , Masculino , Fatores de Tempo , Adulto Jovem
11.
Anesth Analg ; 118(4): 823-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24651237

RESUMO

BACKGROUND: Spatially resolved near-infrared spectroscopy-determined frontal lobe tissue oxygenation (ScO2) is reduced with administration of phenylephrine, while cerebral blood flow may remain unaffected. We hypothesized that extracranial vasoconstriction explains the effect of phenylephrine on ScO2. METHODS: We measured ScO2 and internal and external carotid as well as vertebral artery blood flow in 7 volunteers (25 [SD 4] years) by duplex ultrasonography during IV infusion of phenylephrine, together with middle cerebral artery mean blood velocity, forehead skin blood flow, and mean arterial blood pressure. RESULTS: During phenylephrine infusion, mean arterial blood pressure increased, while ScO2 decreased by -19% ± 3% (mean ± SE; P = 0.0005). External carotid artery (-27.5% ± 3.0%) and skin blood flow (-25.4% ± 7.8%) decreased in response to phenylephrine administration, and there was a relationship between ScO2 and forehead skin blood flow (Pearson r = 0.55, P = 0.042, 95% confidence interval [CI], = 0.025-0.84; Spearman r = 0.81, P < 0.001, 95% CI, 0.49-0.94) and external carotid artery conductance (Pearson r = 0.62, P = 0.019, 95% CI, 0.13 to 0.86; Spearman r = 0.64, P = 0.012, 95% CI, 0.17-0.88). CONCLUSIONS: These findings suggest that a phenylephrine-induced decrease in ScO2, as determined by INVOS-4100 near-infrared spectroscopy, reflects vasoconstriction in the extracranial vasculature rather than a decrease in cerebral oxygenation.


Assuntos
Lobo Frontal/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fenilefrina/farmacologia , Pele/irrigação sanguínea , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Vasoconstritores/farmacologia , Algoritmos , Pressão Sanguínea/efeitos dos fármacos , Artéria Carótida Externa/efeitos dos fármacos , Artéria Carótida Externa/fisiologia , Lobo Frontal/química , Lobo Frontal/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Modelos Lineares , Masculino , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/fisiologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Pele/efeitos dos fármacos , Resistência Vascular/efeitos dos fármacos , Artéria Vertebral/efeitos dos fármacos , Artéria Vertebral/fisiologia , Adulto Jovem
12.
Front Physiol ; 15: 1227316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529482

RESUMO

Purpose: High-intensity interval training (HIIT) may induce training-specific physiological adaptations such as improved respiratory and cardiovascular adjustments before and after the onset of high-intensity exercise, leading to improved exercise performance during high-intensity exercise. The present study investigated the effects of HIIT on time-dependent cardiorespiratory adjustment during maximal exercise and before and after initiation of high-intensity exercise, as well as on maximal exercise performance. Methods: 21 healthy male college students were randomly assigned to HIIT group (n = 11) or control group (n = 10). HIIT group performed training on a cycle ergometer once a week for 8 weeks. The training consisted of three bouts of exercise at 95% maximal work rate (WRmax) until exhaustion. Before and after the HIIT program, dynamic cardiorespiratory function was investigated by ramp and step exercise tests, and HIIT-induced cardiac morphological changes were assessed using echocardiography. Results: HIIT significantly improved not only maximal oxygen uptake and minute ventilation, but also maximal heart rate (HR), systolic blood pressure (SBP), and time to exhaustion in both exercise tests (p < 0.05). Time-dependent increases in minute ventilation (VE) and HR before and at the start of exercise were significantly enhanced after HIIT. During high-intensity exercise, there was a strong correlation between percent change (from before to after HIIT program) in time to exhaustion and percent change in HRmax (r = 0.932, p < 0.001). Furthermore, HIIT-induced cardiac morphological changes such as ventricular wall hypertrophy was observed (p < 0.001). Conclusion: We have demonstrated that HIIT at 95% WRmax induces training-specific adaptations such as improved cardiorespiratory adjustments, not only during maximal exercise but also before and after the onset of high-intensity exercise, improvement of exercise performance mainly associated with circulatory systems.

13.
Clin Sci (Lond) ; 125(1): 37-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23330653

RESUMO

The respiratory chemoreflex is known to be modified during orthostatic stress although the underlying mechanisms remain to be established. To determine the potential role of cerebral hypoperfusion, we examined the relationship between changes in MCA V(mean) (middle cerebral artery mean blood velocity) and ˙VE (pulmonary minute ventilation) from supine control to LBNP (lower body negative pressure; −45mmHg) at different CO(2) levels (0, 3.5 and 5% CO(2)). The regression line of the linear relationship between ˙V(E) and PETCO(2) (end-tidal CO(2)) shifted leftwards during orthostatic stress without any change in sensitivity (1.36+− 0.27 l/min per mmHg at supine to 1.06+− 0.21 l/min per mmHg during LBNP; P=0.087). In contrast, the relationship between MCA V(mean) and PETCO(2) was not shifted by LBNP-induced changes in PETCO2. However, changes in ˙V(E) from rest to LBNP were more related to changes in MCA V(mean) than changes in PETCO(2). These findings demonstrate for the first time that postural reductions in CBF (cerebral blood flow) modified the central respiratory chemoreflex by moving its operating point. An orthostatically induced decrease in CBF probably attenuated the 'washout' of CO(2) from the brain causing hyperpnoea following activation of the central chemoreflex.


Assuntos
Dióxido de Carbono/fisiologia , Circulação Cerebrovascular , Pressão Negativa da Região Corporal Inferior , Intolerância Ortostática/fisiopatologia , Ventilação Pulmonar , Adulto , Velocidade do Fluxo Sanguíneo , Humanos , Masculino , Artéria Cerebral Média/fisiopatologia , Estresse Fisiológico , Decúbito Dorsal , Adulto Jovem
14.
Exp Physiol ; 98(3): 692-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23143991

RESUMO

Hypoxia changes the regional distribution of cerebral blood flow and stimulates the ventilatory chemoreflex, thereby reducing CO2 tension. We examined the effects of both hypoxia and isocapnic hypoxia on acute changes in internal carotid (ICA) and vertebral artery (VA) blood flow. Ten healthy male subjects underwent the following two randomly assigned respiratory interventions after a resting baseline period with room air: (i) hypoxia; and (ii) isocapnic hypoxia with a controlled gas mixture (12% O2; inspiratory mmHg). In the isocapnic hypoxia intervention, subjects were instructed to maintain the rate and depth of breathing to maintain the level of end-tidal partial pressure of CO2 ( ) during the resting baseline period. The ICA and VA blood flow (velocity × cross-sectional area) were measured using Doppler ultrasonography. The was decreased (-6.3 ± 0.9%, P < 0.001) during hypoxia by hyperventilation (minute ventilation +12.9 ± 2.2%, P < 0.001), while was unchanged during isocapnic hypoxia. The ICA blood flow was unchanged (P = 0.429), while VA blood flow increased (+10.3 ± 3.1%, P = 0.010) during hypoxia. In contrast, isocapnic hypoxia increased both ICA (+14.5 ± 1.4%, P < 0.001) and VA blood flows (+10.9 ± 2.4%, P < 0.001). Thus, hypoxic vasodilatation outweighed hypocapnic vasoconstriction in the VA, but not in the ICA. These findings suggest that acute hypoxia elicits an increase in posterior cerebral blood flow, possibly to maintain essential homeostatic functions of the brainstem.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Artéria Carótida Interna/fisiologia , Circulação Cerebrovascular/fisiologia , Hipóxia/fisiopatologia , Artéria Vertebral/fisiologia , Adulto , Humanos , Masculino , Oxigênio/sangue , Pressão Parcial , Respiração , Ultrassonografia Doppler Transcraniana
15.
Eur J Appl Physiol ; 112(1): 237-51, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21537929

RESUMO

We have reported that minute ventilation [[Formula: see text]] and end-tidal CO(2) tension [[Formula: see text]] are determined by the interaction between central controller and peripheral plant properties. During exercise, the controller curve shifts upward with unchanged central chemoreflex threshold to compensate for the plant curve shift accompanying increased metabolism. This effectively stabilizes [Formula: see text] within the normal range at the expense of exercise hyperpnea. In the present study, we investigated how endurance-trained athletes reduce this exercise hyperpnea. Nine exercise-trained and seven untrained healthy males were studied. To characterize the controller, we induced hypercapnia by changing the inspiratory CO(2) fraction with a background of hyperoxia and measured the linear [Formula: see text] relation [[Formula: see text]]. To characterize the plant, we instructed the subjects to alter [Formula: see text] voluntarily and measured the hyperbolic [Formula: see text] relation ([Formula: see text]). We characterized these relations both at rest and during light exercise. Regular exercise training did not affect the characteristics of either controller or plant at rest. Exercise stimulus increased the controller gain (S) both in untrained and trained subjects. On the other hand, the [Formula: see text]-intercept (B) during exercise was greater in trained than in untrained subjects, indicating that exercise-induced upward shift of the controller property was less in trained than in untrained subjects. The results suggest that the additive exercise drive to breathe was less in trained subjects, without necessarily a change in central chemoreflex threshold. The hyperbolic plant property shifted rightward and upward during exercise as predicted by increased metabolism, with little difference between two groups. The [Formula: see text] during exercise in trained subjects was 21% lower than that in untrained subjects (P < 0.01). These results indicate that an adaptation of the controller, but not that of plant, contributes to the attenuation of exercise hyperpnea at an iso-metabolic rate in trained subjects. However, whether training induces changes in neural drive originating from the central nervous system, afferents from the working limbs, or afferents from the heart, which is additive to the chemoreflex drive to breathe, cannot be determined from these results.


Assuntos
Hipercapnia/complicações , Hipercapnia/fisiopatologia , Hiperventilação/etiologia , Hiperventilação/fisiopatologia , Modelos Biológicos , Resistência Física , Mecânica Respiratória , Adaptação Fisiológica , Adulto , Simulação por Computador , Metabolismo Energético , Humanos , Masculino
16.
J Physiol Sci ; 72(1): 30, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434503

RESUMO

Moxibustion is a traditional East Asian medicine treatment that involves burning moxa directly or indirectly on or near the skin at a specific site of the body, called an acupoint. However, whether moxibustion induces cardiovascular responses by modulating autonomic nervous activity remains unknown. The purpose of this study was to elucidate the effects of indirect moxibustion on cardiovascular responses and autonomic nervous activity. Fifteen healthy volunteers participated in the study. Each subject received regional heat stimulation by indirect moxibustion at the lower leg acupoint. Heart rate, RR intervals, blood pressure and skin temperature were measured continuously for 3 min at rest and 5 min during indirect moxibustion. Local skin temperature increased reaching a peak (45.3 ± 3.3 °C) at 2 min after moxibustion was started, and was accompanied by a significant decrease in heart rate (63.0 ± 7.8 to 60.8 ± 7.8 bpm, p < 0.05) together with a significant increase in root mean square difference of successive RR intervals. Regional heat stimulation by indirect moxibustion induced bradycardic response, which was modulated by autonomic nervous system.


Assuntos
Sistema Cardiovascular , Moxibustão , Humanos , Temperatura Alta , Pontos de Acupuntura , Sistema Nervoso Autônomo
17.
Physiol Rep ; 10(14): e15392, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35859325

RESUMO

Since the arterial baroreflex system is classified as an immediate control system, the focus has been on analyzing its dynamic characteristics in the frequency range between 0.01 and 1 Hz. Although the dynamic characteristics in the frequency range below 0.01 Hz are not expected to be large, actual experimental data are scant. The aim was to identify the dynamic characteristics of the carotid sinus baroreflex in the frequency range down to 0.001 Hz. The carotid sinus baroreceptor regions were isolated from the systemic circulation, and carotid sinus pressure (CSP) was changed every 10 s according to Gaussian white noise with a mean of 120 mmHg and standard deviation of 20 mmHg for 90 min in anesthetized Wistar-Kyoto rats (n = 8). The dynamic gain of the linear transfer function relating CSP to arterial pressure (AP) at 0.001 Hz tended to be greater than that at 0.01 Hz (1.060 ± 0.197 vs. 0.625 ± 0.067, p = 0.080), suggesting that baroreflex control was largely maintained at 0.001 Hz. Regarding nonlinear analysis, a second-order Uryson model predicted AP with a higher R2 value (0.645 ± 0.053) than a linear model (R2  = 0.543 ± 0.057, p = 0.025) or a second-order Volterra model (R2  = 0.589 ± 0.055, p = 0.045) in testing data. These pieces of information may be used to create baroreflex models that can add a component of autonomic control to a cardiovascular digital twin for predicting acute hemodynamic responses to treatments and tailoring individual treatment strategies.


Assuntos
Barorreflexo , Seio Carotídeo , Animais , Pressão Arterial , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Seio Carotídeo/fisiologia , Pressorreceptores/fisiologia , Ratos , Ratos Endogâmicos WKY , Sistema Nervoso Simpático/fisiologia
18.
Physiol Rep ; 10(5): e15210, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246949

RESUMO

This study aimed to investigate whether anticipatory cardiorespiratory responses vary depending on the intensity of the subsequent exercise bout, and whether anticipatory cardiorespiratory adjustments contribute importantly to enhancing exercise performance during high-intensity exercise. Eleven healthy men were provided advance notice of the exercise intensity and a countdown to generate anticipation during 10 min prior to exercise at 0, 50, 80 or 95% maximal work-rate (Experiment 1). A different group of subjects (n = 15) performed a time to exhaustion trial with or without anticipatory countdown (Experiment 2). In Experiment 1, heart rate (HR), oxygen uptake (VO2 ) and minute ventilation (VE ) during pre-exercise resting period increased over time and depended on the subsequent exercise intensity. Specifically, there was already a 7.4% increase in HR from more than 5 min prior to the start of exercise at 95% maximal work-rate, followed by progressively augmented increases of 12.5% between 2 and 3 min before exercise, 24.4% between 0 and 1 min before exercise. In Experiment 2, the initial HR for the first 10 s of exercise in the task with anticipation was 11.4% larger compared to without anticipation (p < 0.01), and the difference in HR between the two conditions decreased in a time-dependent manner. In contrast, the initial increases in VO2 and VE were significantly lower in the task with anticipation than that without anticipation. The time to exhaustion during high-intensity exercise was 14.6% longer under anticipation condition compared to no anticipation (135 ± 26 s vs. 119 ± 26 s, p = 0.003). In addition, the enhanced exercise performance correlated positively with increased HR response just before and immediately after exercise onset (p < 0.01). These results showed that anticipatory cardiorespiratory adjustments (feedforward control) via the higher brain that operate before starting exercise may play an important role in minimizing the time delay of circulatory response and enhancing performance after onset of high-intensity exercise in man.


Assuntos
Exercício Físico , Consumo de Oxigênio , Exercício Físico/fisiologia , Teste de Esforço , Frequência Cardíaca/fisiologia , Humanos , Masculino
19.
Am J Physiol Regul Integr Comp Physiol ; 300(4): R969-77, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21270342

RESUMO

We examined the transfer function of autonomic heart rate (HR) control in anesthetized sedentary and exercise-trained (16 wk, treadmill for 1 h, 5 times/wk at 15 m/min and 15-degree grade) rats for comparison to HR variability assessed in the conscious resting state. The transfer function from sympathetic stimulation to HR response was similar between groups (gain, 4.2 ± 1.5 vs. 4.5 ± 1.5 beats·min(-1)·Hz(-1); natural frequency, 0.07 ± 0.01 vs. 0.08 ± 0.01 Hz; damping coefficient, 1.96 ± 0.55 vs. 1.69 ± 0.15; and lag time, 0.7 ± 0.1 vs. 0.6 ± 0.1 s; sedentary vs. exercise trained, respectively, means ± SD). The transfer gain from vagal stimulation to HR response was 6.1 ± 3.0 in the sedentary and 9.7 ± 5.1 beats·min(-1)·Hz(-1) in the exercise-trained group (P = 0.06). The corner frequency (0.11 ± 0.05 vs. 0.17 ± 0.09 Hz) and lag time (0.1 ± 0.1 vs. 0.2 ± 0.1 s) did not differ between groups. When the sympathetic transfer gain was averaged for very-low-frequency and low-frequency bands, no significant group effect was observed. In contrast, when the vagal transfer gain was averaged for very-low-frequency, low-frequency, and high-frequency bands, exercise training produced a significant group effect (P < 0.05 by two-way, repeated-measures ANOVA). These findings suggest that, in the frequency domain, exercise training augments the dynamic HR response to vagal stimulation but not sympathetic stimulation, regardless of the frequency bands.


Assuntos
Frequência Cardíaca/fisiologia , Condicionamento Físico Animal/fisiologia , Sistema Nervoso Simpático/fisiologia , Nervo Vago/fisiologia , Animais , Estimulação Elétrica , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley
20.
Front Neurosci ; 15: 694512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526878

RESUMO

The arterial baroreflex system plays a key role in maintaining the homeostasis of arterial pressure (AP). Changes in AP affect autonomic nervous activities through the baroreflex neural arc, whereas changes in the autonomic nervous activities, in turn, alter AP through the baroreflex peripheral arc. This closed-loop negative feedback operation makes it difficult to identify open-loop dynamic characteristics of the neural and peripheral arcs. Regarding sympathetic AP controls, we examined the applicability of a nonparametric frequency-domain closed-loop identification method to the carotid sinus baroreflex system in anesthetized rabbits. This article compares the results of an open-loop analysis applied to open-loop data, an open-loop analysis erroneously applied to closed-loop data, and a closed-loop analysis applied to closed-loop data. To facilitate the understanding of the analytical method, sample data files and sample analytical codes were provided. In the closed-loop identification, properties of the unknown central noise that modulated the sympathetic nerve activity and the unknown peripheral noise that fluctuated AP affected the accuracy of the estimation results. A priori knowledge about the open-loop dynamic characteristics of the arterial baroreflex system may be used to advance the assessment of baroreflex function under closed-loop conditions in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA