Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Sci ; 99(5): 1029-33, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18294280

RESUMO

Causing damage to angiogenic vessels is a promising approach for cancer chemotherapy. The present study is a codification of a designed liposomal drug delivery system (DDS) for antineovascular therapy (ANET) with 2'-C-cyano-2'-deoxy-1-beta-D-arabino-pentofuranosylcytosine (CNDAC). The authors have previously reported that liposomalized 5'-O-dipalmitoylphosphatidyl CNDAC (DPP-CNDAC), a phospholipid derivative of the novel antitumor nucleoside CNDAC, is quite useful for ANET. DPP-CNDAC liposomes modified with APRPG, a peptide having affinity toward angiogenic vessels, efficiently suppressed tumor growth by damaging angiogenic endothelial cells. In the present study, the authors masked the hydrophilic moiety of DPP-CNDAC, namely, CNDAC, on the liposomal surface with APRPG-polyethyleneglycol (PEG) conjugate to improve the availability of DPP-CNDAC liposomes. The use of the APRPG-PEG conjugate attenuated the negative zeta-potential of the DPP-CNDAC liposomes and reduced the agglutinability of them in the presence of serum. These effects improved the blood level of DPP-CNDAC liposomes in colon 26 NL-17 tumor-bearing BALB/c male mice, resulting in enhanced accumulation of them in the tumor. Laser scanning microscopic observations indicated that APRPG-PEG-modified DPP-CNDAC liposomes (LipCNDAC/APRPG-PEG) colocalized with angiogenic vessels and strongly induced apoptosis of tumor cells, whereas PEG-modified DPP-CNDAC liposomes (LipCNDAC/PEG) did not. In fact, LipCNDAC/APRPG-PEG suppressed the tumor growth more strongly compared to LipCNDAC/PEG and increased significantly the life span of the mice. The present study is a good example of an effective liposomal DDS for ANET that is characterized by: (i) phospholipid derivatization of a certain anticancer drug to suit the liposomal formulation; (ii) PEG-shielding for masking undesirable properties of the drug on the liposomal surface; and (iii) active targeting to angiogenic endothelial cells using a specific probe.


Assuntos
Antineoplásicos/administração & dosagem , Arabinonucleotídeos/administração & dosagem , Lipossomos/química , Neovascularização Patológica/tratamento farmacológico , Polietilenoglicóis/química , Animais , Antineoplásicos/uso terapêutico , Arabinonucleotídeos/uso terapêutico , Sistemas de Liberação de Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/tratamento farmacológico , Distribuição Tecidual , Células Tumorais Cultivadas
2.
Biol Pharm Bull ; 29(9): 1936-40, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16946513

RESUMO

We previously observed the enhanced anticancer efficacy of anticancer drugs encapsulated in Ala-Pro-Arg-Pro-Gly-polyethyleneglycol-modified liposome (APRPG-PEG-Lip) in tumor-bearing mice, since APRPG peptide was used as an active targeting tool to angiogenic endothelium. This modality, antineovascular therapy (ANET), aims to eradicate tumor cells indirectly through damaging angiogenic vessels. In the present study, we examined the in vivo trafficking of APRPG-PEG-Lip labeled with [2-(18)F]2-fluoro-2-deoxy-D-glucose ([2-(18)F]FDG) by use of positron emission tomography (PET), and observed that the trafficking of this liposome was quite similar to that of non-targeted long-circulating liposome (PEG-Lip). Then, histochemical analysis of intratumoral distribution of both liposomes was performed by use of fluorescence-labeled liposomes. In contrast to in vivo trafficking, intratumoral distribution of both types of liposomes was quite different: APRPG-PEG-Lip was colocalized with angiogenic endothelial cells that were immunohistochemically stained for CD31, although PEG-Lip was localized around the angiogenic vessels. These results strongly suggest that intratumoral distribution of drug carrier is much more important for therapeutic efficacy than the total accumulation of the anticancer drug in the tumor, and that active delivery of anticancer drugs to angiogenic vessels is useful for cancer treatment.


Assuntos
Antineoplásicos/administração & dosagem , Oligopeptídeos/administração & dosagem , Polietilenoglicóis/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Fluordesoxiglucose F18 , Lipossomos , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Tomografia por Emissão de Pósitrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA