Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38905308

RESUMO

Histone demethylase JMJD2D (also known as KDM4D) can specifically demethylate H3K9me2/3 to activate its target gene expression. Our previous study has demonstrated that JMJD2D can protect intestine from dextran sulfate sodium (DSS)-induced colitis by activating Hedgehog signaling; however, its involvement in host defense against enteric attaching and effacing bacterial infection remains unclear. The present study was aimed to investigate the role of JMJD2D in host defense against enteric bacteria and its underlying mechanisms. The enteric pathogen Citrobacter rodentium (C. rodentium) model was used to mimic clinical colonic infection. The responses of wild-type and JMJD2D-/- mice to oral infection of C. rodentium were investigated. Bone marrow chimeric mice were infected with C. rodentium. JMJD2D expression was knocked down in CMT93 cells by using small hairpin RNAs, and Western blot and real-time PCR assays were performed in these cells. The relationship between JMJD2D and STAT3 was studied by co-immunoprecipitation and chromatin immunoprecipitation. JMJD2D was significantly up-regulated in colonic epithelial cells of mice in response to Citrobacter rodentium infection. JMJD2D-/- mice displayed an impaired clearance of C. rodentium, more body weight loss, and more severe colonic tissue pathology compared with wild-type mice. JMJD2D-/- mice exhibited an impaired expression of IL-17F in the colonic epithelial cells, which restricts C. rodentium infection by inducing the expression of antimicrobial peptides. Accordingly, JMJD2D-/- mice showed a decreased expression of ß-defensin-1, ß-defensin-3, and ß-defensin-4 in the colonic epithelial cells. Mechanistically, JMJD2D activated STAT3 signaling by inducing STAT3 phosphorylation and cooperated with STAT3 to induce IL-17F expression by interacting with STAT3 and been recruited to the IL-17F promoter to demethylate H3K9me3. Our study demonstrates that JMJD2D contributes to host defense against enteric bacteria through up-regulating IL-17F to induce ß-defensin expression.


Assuntos
Citrobacter rodentium , Colo , Infecções por Enterobacteriaceae , Interleucina-17 , Histona Desmetilases com o Domínio Jumonji , Camundongos Knockout , Regulação para Cima , beta-Defensinas , Animais , Camundongos , beta-Defensinas/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/imunologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Interleucina-17/metabolismo , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Camundongos Endogâmicos C57BL , Colite/metabolismo , Colite/microbiologia , Fator de Transcrição STAT3/metabolismo
2.
J Cell Mol Med ; 28(7): e18171, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506084

RESUMO

SRC-1 functions as a transcriptional coactivator for steroid receptors and various transcriptional factors. Notably, SRC-1 has been implicated in oncogenic roles in multiple cancers, including breast cancer and prostate cancer. Previous investigations from our laboratory have established the high expression of SRC-1 in human HCC specimens, where it accelerates HCC progression by enhancing Wnt/beta-catenin signalling. In this study, we uncover a previously unknown role of SRC-1 in HCC metastasis. Our findings reveal that SRC-1 promotes HCC metastasis through the augmentation of MMP-9 expression. The knockdown of SRC-1 effectively mitigated HCC cell metastasis both in vitro and in vivo by suppressing MMP-9 expression. Furthermore, we observed a positive correlation between SRC-1 mRNA levels and MMP-9 mRNA levels in limited and larger cohorts of HCC specimens from GEO database. Mechanistically, SRC-1 operates as a coactivator for NF-κB and AP-1, enhancing MMP-9 promoter activity in HCC cells. Higher levels of SRC-1 and MMP-9 expression are associated with worse overall survival in HCC patients. Treatment with Bufalin, known to inhibit SRC-1 expression, significantly decreased MMP-9 expression and inhibited HCC metastasis in both in vitro and in vivo settings. Our results demonstrated the pivotal role of SRC-1 as a critical modulator in HCC metastasis, presenting a potential therapeutic target for HCC intervention.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , RNA Mensageiro , Invasividade Neoplásica/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
3.
J Biol Chem ; 296: 100121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33434575

RESUMO

Cancer stem-like cells (CSCs) contribute to the high rate of tumor heterogeneity, metastasis, therapeutic resistance, and recurrence. Histone lysine demethylase 4D (KDM4D or JMJD2D) is highly expressed in colon and liver tumors, where it promotes cancer progression; however, the role of JMJD2D in CSCs remains unclear. Here, we show that JMJD2D expression was increased in liver cancer stem-like cells (LCSCs); downregulation of JMJD2D inhibited the self-renewal of LCSCs in vitro and in vivo and inhibited the lung metastasis of LCSCs by reducing the survival and the early lung seeding of circulating LCSCs. Mechanistically, JMJD2D promoted LCSC self-renewal by enhancing the expression of CSC markers EpCAM and Sox9; JMJD2D reduced H3K9me3 levels on the promoters of EpCAM and Sox9 to enhance their transcription via interaction with ß-catenin/TCF4 and Notch1 intracellular domain, respectively. Restoration of EpCAM and Sox9 expression in JMJD2D-knockdown liver cancer cells rescued the self-renewal of LCSCs. Pharmacological inhibition of JMJD2D using 5-c-8HQ reduced the self-renewal of LCSCs and liver cancer progression. Collectively, our findings suggest that JMJD2D promotes LCSC self-renewal by enhancing EpCAM and Sox9 expression via Wnt/ß-catenin and Notch signaling pathways and is a potential therapeutic target for liver cancer.


Assuntos
Metilação de DNA , Molécula de Adesão da Célula Epitelial/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOX9/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Autorrenovação Celular/fisiologia , Células Hep G2 , Xenoenxertos , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt
4.
Gastroenterology ; 156(4): 1112-1126, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472235

RESUMO

BACKGROUND & AIMS: Wnt signaling contributes to the development of colorectal cancer (CRC). We studied interactions between lysine demethylase 4D (KDM4D or JMJD2D) and ß-catenin, a mediator of Wnt signaling, in CRC cell lines and the effects on tumor formation in mice. METHODS: We obtained colorectal tumor specimens and surrounding nontumor colon tissues (controls) from patients undergoing surgery in China; levels of JMJD2D were measured by immunohistochemical or immunoblot analysis. JMJD2D expression was knocked down in CRC (CT26, HCT116, and SW480 cells) using small hairpin RNAs, and cells were analyzed with viability, flow cytometry, colony formation, and transwell migration and invasion assays. Cells were also grown as tumor xenografts in nude mice or injected into tail veins or spleens of mice, and metastases were measured. We performed promoter activity, co-immunoprecipitation, and chromatin immunoprecipitation assays. We also performed studies with Apcmin/+ and JMJD2D-knockout mice; these mice were crossed, and colorectal tumor formation in offspring (Apcmin/+Jmjd2d+/+ and Apcmin/+Jmjd2d-/-) was analyzed. JMJD2D-knockout and wild-type (control) mice were given azoxymethane followed by dextran sodium sulfate to induce colitis-associated CRC; some mice were given the JMJD2D inhibitor 5-chloro-8-hydroxyquinoline (5-c-8HQ) or vehicle to examine the effects of 5-c-8HQ on intestinal tumor formation. RESULTS: Levels of JMJD2D were significantly higher in human colorectal tumors than in control tissues and correlated with levels of proliferating cell nuclear antigen. JMJD2D knockdown reduced CRC cell proliferation, migration, and invasion, as well as growth of xenograft tumors and formation of metastases in mice. JMJD2D was required for expression of ß-catenin in CRC cell lines; ectopic expression of JMJD2D increased the promoter activities of genes regulated by ß-catenin (MYC, CCND1, MMP2, and MMP9). We found that JMJD2D and ß-catenin interacted physically and that JMJD2D demethylated H3K9me3 at promoters of ß-catenin target genes. JMJD2D-knockout mice developed fewer colitis-associated colorectal tumors than control mice, and their tumor tissues had lower levels of ß-catenin, MYC, cyclin D1, and proliferating cell nuclear antigen than tumors from control mice. Apcmin/+Jmjd2d-/- mice developed fewer and smaller colon tumors than Apcmin/+ mice. Mice given 5-c-8HQ developed smaller and fewer colitis-associated tumors, with lower levels of cell proliferation, than mice given vehicle. Apcmin/+ mice given 5-c-8HQ also developed fewer tumors in intestines and colons than mice given vehicle. CONCLUSIONS: Levels of the histone demethylase JMJD2D are increased in human colorectal tumors compared with nontumor colon tissues. JMJD2D interacts with ß-catenin to activate transcription of its target genes and promote CRC cell proliferation, migration, and invasion, as well as formation of colorectal tumors in mice.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , beta Catenina/metabolismo , Animais , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Cloroquinolinóis/farmacologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Ciclina D1/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Metilação , Camundongos , Camundongos Knockout , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transcrição Gênica , Ensaio Tumoral de Célula-Tronco , Via de Sinalização Wnt , beta Catenina/genética
5.
J Biol Chem ; 293(27): 10606-10619, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29802196

RESUMO

The histone demethylase Jumonji domain containing 1A (JMJD1A) is overexpressed in multiple tumors and promotes cancer progression. JMJD1A has been shown to promote colorectal cancer (CRC) progression, but its molecular role in CRC is unclear. Here, we report that JMJD1A is overexpressed in CRC specimens and that its expression is positively correlated with that of proliferating cell nuclear antigen (PCNA). JMJD1A knockdown decreased the expression of proliferative genes such as c-Myc, cyclin D1, and PCNA, suppressed CRC cell proliferation, arrested cell cycle progression, and reduced xenograft tumorigenesis. Furthermore, JMJD1A knockdown inhibited CRC cell migration, invasion, and lung metastasis by decreasing matrix metallopeptidase 9 (MMP9) expression and enzymatic activity. Moreover, bioinformatics analysis of GEO profile datasets revealed that JMJD1A expression in human CRC specimens is positively correlated with the expression of Wnt/ß-catenin target genes, including c-Myc, cyclin D1, and MMP9. Mechanistically, JMJD1A enhanced Wnt/ß-catenin signaling by promoting ß-catenin expression and interacting with ß-catenin to enhance its transactivation. JMJD1A removed the methyl groups of H3K9me2 at the promoters of c-Myc and MMP9 genes. In contrast, the JMJD1AH1120Y variant, which lacked demethylase activity, did not demethylate H3K9me2 at these promoters, failed to assist ß-catenin to induce the expression of Wnt/ß-catenin target genes, and failed to promote CRC progression. These findings suggest that JMJD1A's demethylase activity is required for Wnt/ß-catenin activation. Of note, high JMJD1A levels in CRC specimens predicted poor cancer outcomes. In summary, JMJD1A promotes CRC progression by enhancing Wnt/ß-catenin signaling, implicating JMJD1A as a potential molecular target for CRC management.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Pulmonares/secundário , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Carcinogênese , Ciclo Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Células Tumorais Cultivadas , Proteínas Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética
6.
Crit Rev Immunol ; 38(3): 245-252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30004860

RESUMO

Steroid receptor coactivator 3 (SRC-3) is a transcriptional coactivator that interacts with nuclear receptors such as the estrogen receptor and the androgen receptor and several other transcription factors to enhance their effects on target gene expression. SRC-3 plays important roles in many developmental, physiological, and pathologic events, including body growth, mammary gland development, energy homeostasis, inflammatory regulation, and cancer initiation and progression. SRC-3 has been suggested to be involved in host defense against bacterial pathogens. In this review, we summarize the roles of SRC-3 in host defense against peritoneal and enteric bacterial infection and discuss the potential clinical implications.


Assuntos
Infecções Bacterianas/imunologia , Inflamação/metabolismo , Glândulas Mamárias Humanas/fisiologia , Neoplasias/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Animais , Metabolismo Energético , Homeostase , Humanos , Coativador 3 de Receptor Nuclear/genética , Receptores de Estrogênio/metabolismo
7.
J Immunol ; 198(4): 1606-1615, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28053238

RESUMO

Steroid receptor coactivator 3 (SRC-3) is a transcriptional coactivator that interacts with nuclear receptors and some other transcription factors to enhance their effects on target gene transcription. We reported previously that SRC-3-deficient (SRC-3-/-) mice are extremely susceptible to Escherichia coli-induced septic peritonitis as a result of uncontrolled inflammation and a defect in bacterial clearance. In this study, we observed significant upregulation of SRC-3 in colonic epithelial cells in response to Citrobacter rodentium infection. Based on these findings, we hypothesized that SRC-3 is involved in host defense against attaching and effacing bacterial infection. We compared the responses of SRC-3-/- and wild-type mice to intestinal C. rodentium infection. We found that SRC-3-/- mice exhibited delayed clearance of C. rodentium and more severe tissue pathology after oral infection with C. rodentium compared with wild-type mice. SRC-3-/- mice expressed normal antimicrobial peptides in the colons but exhibited delayed recruitment of neutrophils into the colonic mucosa. Accordingly, SRC-3-/- mice showed a delayed induction of CXCL2 and CXCL5 in colonic epithelial cells, which are responsible for neutrophil recruitment. At the molecular level, we found that SRC-3 can activate the NF-κB signaling pathway to promote CXCL2 expression at the transcriptional level. Collectively, we show that SRC-3 contributes to host defense against enteric bacteria, at least in part via upregulating CXCL2 expression to recruit neutrophils.


Assuntos
Quimiocina CXCL2/genética , Infecções por Enterobacteriaceae/imunologia , Infiltração de Neutrófilos , Coativador 3 de Receptor Nuclear/metabolismo , Regulação para Cima , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Quimiocina CXCL2/imunologia , Quimiocina CXCL5/genética , Quimiocina CXCL5/imunologia , Citrobacter rodentium/imunologia , Colite/microbiologia , Colite/patologia , Colo/imunologia , Colo/patologia , Interações Hospedeiro-Patógeno/imunologia , Inflamação , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Infiltração de Neutrófilos/imunologia , Coativador 3 de Receptor Nuclear/deficiência , Coativador 3 de Receptor Nuclear/genética
8.
J Biol Chem ; 290(30): 18596-608, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26082485

RESUMO

Steroid receptor coactivator 1 (SRC-1) is a transcriptional coactivator not only for steroid receptors, such as androgen receptor and estrogen receptor, but also for other transcription factors. SRC-1 has been shown to play an important role in the progression of breast cancer and prostate cancer. However, its role in liver cancer progression remains unknown. In this study, we report that SRC-1 was overexpressed in 25 (62.5%) of 40 human hepatocellular carcinoma (HCC) specimens. Down-regulation of SRC-1 decreased HCC cell proliferation and impaired tumor maintenance in HCC xenografts. Knockdown of SRC-1 reduced protein levels of the proliferation marker proliferating cell nuclear antigen (PCNA) and the oncogene c-Myc. Knockout of SRC-1 in mice reduced diethylnitrosamine/CCl4-induced tumor formation in the liver and the expression of c-Myc and PCNA in liver tumors. SRC-1 promoted c-Myc expression, at least in part, by directly interacting with ß-catenin to enhance Wnt/ß-catenin signaling. Consistent with these results, the expression of SRC-1 was positively correlated with PCNA expression in human HCC specimens, and the expression levels of c-Myc in SRC-1-positive HCC specimens were higher than in SRC-1-negative HCC specimens. In addition, SRC-1 and SRC-3 were co-overexpressed in 47.5% of HCC specimens, and they cooperated to promote HCC cell proliferation. Simultaneous down-regulation of SRC-1 and SRC-3 dramatically inhibited HCC cell proliferation. Our results demonstrate that SRC-1 promotes HCC progression by enhancing Wnt/ß-catenin signaling and suggest that SRC-1 is a potential therapeutic molecular target for HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Coativador 1 de Receptor Nuclear/genética , Proteínas Proto-Oncogênicas c-myc/biossíntese , Via de Sinalização Wnt/genética , Animais , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Coativador 1 de Receptor Nuclear/biossíntese , Coativador 3 de Receptor Nuclear/biossíntese , Coativador 3 de Receptor Nuclear/metabolismo , Antígeno Nuclear de Célula em Proliferação/biossíntese , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/genética , beta Catenina/metabolismo
9.
Cell Biosci ; 14(1): 41, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553750

RESUMO

Steroid receptor coactivator-1 (SRC-1, also known as NCOA1) frequently functions as a transcriptional coactivator by directly binding to transcription factors and recruiting to the target gene promoters to promote gene transcription by increasing chromatin accessibility and promoting the formation of transcriptional complexes. In recent decades, various biological and pathological functions of SRC-1 have been reported, especially in the context of tumorigenesis. SRC-1 is a facilitator of the progression of multiple cancers, including breast cancer, prostate cancer, gastrointestinal cancer, neurological cancer, and female genital system cancer. The emerging multiorgan oncogenic role of SRC-1 is still being studied and may not be limited to only steroid hormone-producing tissues. Growing evidence suggests that SRC-1 promotes target gene expression by directly binding to transcription factors, which may constitute a novel coactivation pattern independent of AR or ER. In addition, the antitumour effect of pharmacological inhibition of SRC-1 with agents including various small molecules or naturally active compounds has been reported, but their practical application in clinical cancer therapy is very limited. For this review, we gathered typical evidence on the oncogenic role of SRC-1, highlighted its major collaborators and regulatory genes, and mapped the potential mechanisms by which SRC-1 promotes primary tumour progression.

10.
J Ethnopharmacol ; 335: 118607, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39069029

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jian-Pi-Yi-Shen (JPYS) formula is an effective herbal therapy against renal injury, and JPYS has been clinically applied to ameliorate chronic kidney disease (CKD) and CKD-associated anemia. Increasing evidence supports the link between renal fibrosis and anemia in CKD. JPYS possessed anti-fibrosis effects in experimental CKD. Nevertheless, research on the mechanisms of JPYS in ameliorating renal anemia (RA) through suppressing renal fibrosis remains to be clarified. AIM OF THE STUDY: Our study here was carried out to investigate the mechanisms of JPYS in protecting against RA. MATERIALS AND METHODS: An adenine-induced anemia model in rats with CKD at three different time points was established, and bio-samples taken from each group were analyzed. Biochemical analysis was employed to detect kidney function and hematological parameters. Masson staining was used to evaluate renal fibrosis of rats. Western blot and immunohistochemistry were utilized to evaluate the expressions of fibrotic markers, erythropoietin (EPO) and hypoxia inducible factor-2α (HIF-2α) in the kidneys of rats. Subsequently, transcriptomic analysis was conducted to disclose the possible mechanisms of JPYS in treating RA. Finally, the expression levels of key targets were analyzed and validated by using Western blot and enzyme-linked immunosorbent assay (ELISA). RESULTS: JPYS treatment improved kidney function, suppressed renal fibrosis and enhanced hematological parameters in CKD rats. Moreover, JPYS treatment restored the increased expression levels of fibrotic markers and the declined EPO with time dependence. In parallel, data indicated JPYS treatment stimulated the translocation of HIF-2α into nucleus in the renal interstitium and thus promoted the expression of EPO. Transcriptomic profiling disclosed that activations of both nuclear factor kappa B (NF-κB) and transforming growth factor-ß (TGF-ß)/Smad pathways were closely associated with RA. Ultimately, experimental validation results presented that the increased expressions of target proteins from the above-mentioned two pathways in the kidneys were decreased significantly after JPYS treatment. CONCLUSION: Our findings suggest that JPYS may improve RA by alleviating renal fibrosis, and the mechanisms of which involve in inhibiting the NF-κB and TGF-ß/Smad pathways.


Assuntos
Anemia , Medicamentos de Ervas Chinesas , Eritropoetina , Fibrose , Rim , Ratos Sprague-Dawley , Insuficiência Renal Crônica , Animais , Insuficiência Renal Crônica/tratamento farmacológico , Fibrose/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Anemia/tratamento farmacológico , Anemia/etiologia , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Ratos , Modelos Animais de Doenças , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Adenina/farmacologia
11.
J Pharm Biomed Anal ; 245: 116197, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723558

RESUMO

The dysregulated levels of branched chain amino acids (BCAA) contribute to renal fibrosis in chronic kidney disease (CKD), yet specific analysis of BCAA contents and how they are regulated still remain unclear. It is therefore of great scientific interest to understand BCAA catabolism in CKD and develop a sensitive method for simultaneous determination of individual BCAA and their metabolites branched chain α-ketoacids (BCKA). In this work, the important role of BCAA metabolism that drives renal fibrosis in the process of CKD was first revealed by using transcriptomics. The key target genes controlling BCAA metabolism were then validated, that is, mRNA levels of BCKDHA and BCKDHB, the regulating rate-limiting enzymes during BCAA metabolism were abnormally reduced by quantitative PCR (qPCR), and a similar drop-off trend of protein expression of BCKDH, HIBCH and MCCC2 that are closely related to BCAA metabolism was also confirmed by western blotting. Furthermore, we established a novel strategy that simultaneously determines 6 individual BCAA and BCKA in serum and tissue. The method based on dansylhydrazine derivatization and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-QQQ-MS) achieved to simultaneously determine the contents of BCAA and BCKA, which is efficient and stable. Compared with normal rats, levels of BCAA including leucine, isoleucine and valine in serum and kidney of CKD rats was decreased, while BCKA including α-ketoisocaproic acid, α-ketomethylvaleric acid and α-ketoisovaleric acid was increased. Together, these findings revealed the abnormality of BCAA metabolism in driving the course of kidney fibrosis and CKD. Our current study sheds new light on changes in BCAA metabolism during CKD, and may facilitate development of drugs to treat CKD and renal fibrosis.


Assuntos
Aminoácidos de Cadeia Ramificada , Fibrose , Rim , Ratos Sprague-Dawley , Insuficiência Renal Crônica , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Ratos , Masculino , Cromatografia Líquida de Alta Pressão/métodos , Fibrose/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Rim/metabolismo , Rim/patologia , Cetoácidos/metabolismo , Transcriptoma , Espectrometria de Massas em Tandem/métodos , Perfilação da Expressão Gênica/métodos
12.
J Pharm Anal ; 14(4): 100915, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634065

RESUMO

Pien Tze Huang (PZH), a class I nationally protected traditional Chinese medicine (TCM), has been used to treat liver diseases such as hepatitis; however, the effect of PZH on the progression of sepsis is unknown. Here, we reported that PZH attenuated lipopolysaccharide (LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signalling. Mechanistically, PZH stimulated signal transducer and activator of transcription 3 (STAT3) phosphorylation to induce the expression of A20, which could inhibit the activation of NF-κB and MAPK signalling. Knockdown of the bile acid (BA) receptor G protein-coupled bile acid receptor 1 (TGR5) in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction, as well as the LPS-induced inflammatory response, suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5. Consistently, deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20, the activation of NF-κB and MAPK signalling, and the production of proinflammatory cytokines, whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines. Overall, our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.

13.
Adv Sci (Weinh) ; : e2310037, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953362

RESUMO

Programmed death-ligand 1 (PD-L1) is overexpressed in multiple cancers and critical for their immune escape. It has previously shown that the nuclear coactivator SRC-1 promoted colorectal cancer (CRC) progression by enhancing CRC cell viability, yet its role in CRC immune escape is unclear. Here, we demonstrate that SRC-1 is positively correlated with PD-L1 in human CRC specimens. SRC-1 deficiency significantly inhibits PD-L1 expression in CRC cells and retards murine CRC growth in subcutaneous grafts by enhancing CRC immune escape via increasing tumor infiltration of CD8+ T cells. Genetic ablation of SRC-1 in mice also decreases PD-L1 expression in AOM/DSS-induced murine CRC. These results suggest that tumor-derived SRC-1 promotes CRC immune escape by enhancing PD-L1 expression. Mechanistically, SRC-1 activated JAK-STAT signaling by inhibiting SOCS1 expression and coactivated STAT3 and IRF1 to enhance PD-L1 transcription as well as stabilized PD-L1 protein by inhibiting proteasome-dependent degradation mediated by speckle type POZ protein (SPOP). Pharmacological inhibition of SRC-1 improved the antitumor effect of PD-L1 antibody in both subcutaneous graft and AOM/DSS-induced murine CRC models. Taken together, these findings highlight a crucial role of SRC-1 in regulating PD-L1 expression and targeting SRC-1 in combination with PD-L1 antibody immunotherapy may be an attractive strategy for CRC treatment.

14.
Appl Microbiol Biotechnol ; 97(2): 767-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22678021

RESUMO

Mycoepoxydiene (MED) is a compound isolated from the marine fungal Diaporthe sp. HLY-1 associated with mangroves. MED has various biological effects such as anti-microbial, anti-cancer, and anti-inflammatory activities. However, the effect of MED on the differentiation of osteoclasts, the multinucleated bone-resorbing cells which play a crucial role in bone remodeling, is still unknown. In this study, we showed that MED could inhibit receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation and the expression of three well-known osteoclast markers such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K in bone marrow-derived macrophages. Furthermore, we found that MED inhibited the expression of nuclear factor of activated T cells c1, a key transcriptional factor in osteoclast differentiation, via inhibiting the phosphorylation of TAK1 and then blocking the activation of NF-κB and ERK1/2 pathways. Moreover, MED could prevent bone loss in ovariectomized mice. Taken together, we demonstrate for the first time that MED can suppress RANKL-induced osteoclast differentiation in vitro and ovariectomy-induced osteoporosis in vivo, suggesting that MED is a potential lead compound for the development of novel drugs for osteoporosis treatment.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/etiologia , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Pironas/uso terapêutico , Ligante RANK/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Células Cultivadas , Feminino , Camundongos , Ovariectomia , Pironas/farmacologia
15.
Front Pharmacol ; 14: 1219866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027020

RESUMO

Background: Xiao-Er-An-Shen decoction (XEASD), a TCM formula composed of sixteen Chinese medicinal herbs, has been used to alleviate tic disorders (TD) in clinical practice for many years. However, the chemical basis underlying the therapeutic effects of XEASD in the treatment of TD remains unknown. Purpose: The present study aimed to determine the major chemical components of XEASD and its prototype compounds and metabolites in mice biological samples. Methods: The chemical constituents in XEASD were identified using ultra-high Performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Following this, XEASD was orally administered to mice, and samples of plasma, urine, feces, bile, and tissue were collected in order to identify effective compounds for the prevention or treatment of TD. Result: Of the total 184 compounds identified to be discriminated in the XEASD, comprising 44 flavonoids, 26 phenylpropanoids, 16 coumarins, 16 triterpenoids, 14 amino acids, 13 organic acids, 13 alkaloids, 13 ketones, 10 cyclic enol ether terpenes, 7 citrullines, 3 steroids, and 5 anthraquinones, and others. Furthermore, we summarized 54 prototype components and 78 metabolic products of XEASD, measured with biological samples, by estimating metabolic principal components, with four prototype compounds detected in plasma, 58 prototypes discriminated in urine, and 40 prototypes identified in feces. These results indicate that the Oroxylin A glucuronide from Citri reticulatae pericarpium (CRP) is a major compound with potential therapeutic effects identified in brain, while operating positive effect in inhibiting oxidative stress in vitro. Conclusion: In summary, our work delineates the chemical basis underlying the complexity of XEASD, providing insights into the therapeutic and metabolic pathways for TD. Various types of chemicals were explored in XEASD, including flavonoids, phenylpropanoids, coumarins, organic acids, triterpenoid saponins, and so on. This study can promote the further pharmacokinetic and pharmacological evaluation of XEASD.

16.
J Ethnopharmacol ; 312: 116526, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37088234

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jian-Pi-Yi-Shen (JPYS) is a herbal decoction being used to relieve the symptoms of chronic kidney disease (CKD) and its complications, including anemia, for over twenty years. Nonetheless, it is unclear how JPYS influences renal anemia and iron metabolism. AIM OF THE STUDY: An analysis of network pharmacology, chemical profiling, and in vivo experiments was conducted to identify the impact of JPYS on JAK2-STAT3 pathway and iron utilization in renal anemia and CKD. MATERIALS AND METHODS: The chemical properties of JPYS and its exposed ingredients were detected in vivo. And based on the aforesaid chemical compounds, the potential targets and signaling pathways of JPYS for renal anemia treatment were predicted by network pharmacology. Afterward, an adenine-feeding animal model of CKD-related anemia was developed to verify the mechanism by which JPYS modulates iron recycling to treat renal anemia. Renal injury was estimated by serum creatinine (Scr), blood urea nitrogen (BUN), histopathological examinations and fibrosis degree. Western blot, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry approaches were utilized to assess the levels of JAK2, STAT3 and iron metabolism-related factors. RESULTS: There were 164 active ingredients identified in JPYS, including prototypes and metabolites in vivo were identified in JPYS, and 21 core targets were found through network pharmacology based on topological characteristics. Combined with the core targets and pathway enrichment analysis, the majority of the candidate targets were associated with the JAK2-STAT3 signaling pathways. Experimental results indicated that JPYS treatment significantly decreased the expression of BUN and Scr, restored renal pathological damage, down-regulated fibrosis degree, and improved hematological parameters such as red blood cell, hemoglobin and hematocrit in CKD rats. Furthermore, JPYS significantly restored iron metabolism from dysregulation by increasing the levels of iron and ferritin in the serum, inhibiting the production of hepcidin in liver and serum, and regulating transferrin receptor 1 in bone marrow. Meanwhile, the expression of JAK2 and STAT3 was suppressed by JPYS treatment. CONCLUSIONS: Based on these results, JPYS reduces hepcidin levels by inhibiting the activation of JAK2-STAT3 signaling, thereby protecting against iron deficiency anemia.


Assuntos
Anemia , Insuficiência Renal Crônica , Ratos , Animais , Hepcidinas/metabolismo , Adenina , Anemia/tratamento farmacológico , Ferro , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Fibrose
17.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740507

RESUMO

Posttranslational modifications (PTMs) of histones are well-established contributors in a variety of biological functions, especially tumorigenesis. Histone demethylase JMJD2D (also known as KDM4D), a member of the JMJD2 subfamily, promotes gene transcription by antagonizing H3K9 methylation. JMJD2D is an epigenetic factor coordinating androgen receptor activation, DNA damage repair, DNA replication, and cell cycle regulation. Recently, the oncogenic role of JMJD2D in colorectal cancer (CRC) and hepatocellular cancer (HCC) has been recognized. JMJD2D serves as a coactivator of ß-catenin, Gli1/2, HIF1α, STAT3, IRF1, TCF4, and NICD or an antagonist of p53 to promote the progression of CRC and HCC. In this review, we summarize the molecular mechanisms of JMJD2D in promoting the progression of CRC and HCC as well as the constructive role of its targeting inhibitors in suppressing tumorigenesis and synergistically enhancing the efficacy of anti-PD-1/PD-L1 immunotherapy.

18.
Front Pharmacol ; 13: 828440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185580

RESUMO

Pien Tze Huang (PZH) is a valuable traditional Chinese medicine, which has a variety of biological activities such as clearing heat-toxin, resolving blood stasis, detoxifying, relieving pain, and anti-inflammation. PZH has a partial role in suppressing the progression of CRC, while the underlying mechanism is a pending mystery; especially whether PZH mediates the immune escape of CRC remains unclear. Our study reported that PZH suppressed the proliferative activity of CRC by inhibiting Wnt/ß-catenin signaling to down-regulate the expression of PCNA and Cyclin D1. In addition, PZH suppressed the immune escape of CRC and elevated the infiltration of CD8+ T cells in tumor tissues, which depends on the suppression of PD-L1 levels via inhibiting IFNGR1-JAK1-STAT3-IRF1 signaling. More importantly, PZH pharmacologically elevated the antitumor efficacy of anti-PD-1/PD-L1 immunotherapy as demonstrated by slower tumor growth, higher infiltration and function of CD8+ T cells in the combination of PZH and PD-1/PD-L1 antibody compared with monotherapy with either agent. These results demonstrate that PZH has the potential role in inhibiting CRC proliferation and immune evasion, especially the synergistic enhancement effect of PZH on immunotherapy.

19.
Oncogene ; 41(10): 1421-1433, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35027670

RESUMO

Programmed death-ligand 1 (PD-L1) is an important immunosuppressive molecule highly expressed on the surface of cancer cells. IFNγ triggered cancer cell immunosuppression against CD8+ T cell surveillance via up-regulation of PD-L1. Histone demethylase JMJD2D promotes colorectal cancer (CRC) progression; however, the role of JMJD2D in cancer immune escape is unknown. Here, we report that both PD-L1 and JMJD2D are frequently overexpressed in human CRC specimens with a significant positive correlation. Genetic ablation of JMJD2D in CRC cells attenuated the expression of PD-L1 and stalled tumor growth in mice, accompanied by the elevated number and effector function of tumor infiltrating CD8+ T cells. Mechanistically, JMJD2D coactivated SP-1 to promote the expression of IFNGR1, which elevated STAT3-IRF1 signaling and promoted PD-L1 expression. Again, JMJD2D is a major coactivator for STAT3-IRF1 axis to enhance PD-L1 transcription in a demethylation activity dependent manner. Furthermore, pharmacological inhibition of JMJD2D conduced to improve the anti-tumor efficacy of PD-L1 antibody as demonstrated by slower tumor growth and higher infiltration and function of CD8+ T cells in the combination of JMJD2D inhibitor 5-c-8HQ and PD-L1 antibody group compared with monotherapy with either agent. These results demonstrate that JMJD2D promotes CRC immune escape by enhancing PD-L1 expression to inhibit the activation and tumor infiltration of CD8+ T cells; targeting JMJD2D has the potential role in promoting the efficacy of anti-PD-1/PD-L1 immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Humanos , Fator Regulador 1 de Interferon/metabolismo , Camundongos , Receptores de Interferon/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Receptor de Interferon gama
20.
Oncogene ; 41(20): 2846-2859, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35418691

RESUMO

Overexpression of nuclear coactivator steroid receptor coactivator 1 (SRC-1) and aberrant activation of the Hedgehog (Hh) signaling pathway are associated with various tumorigenesis; however, the significance of SRC-1 in colorectal cancer (CRC) and its contribution to the activation of Hh signaling are unclear. Here, we identified a conserved Hh signaling signature positively correlated with SRC-1 expression in CRC based on TCGA database; SRC-1 deficiency significantly inhibited the proliferation, survival, migration, invasion, and tumorigenesis of both human and mouse CRC cells, and SRC-1 knockout significantly suppressed azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC in mice. Mechanistically, SRC-1 promoted the expression of GLI family zinc finger 2 (GLI2), a major downstream transcription factor of Hh pathway, and cooperated with GLI2 to enhance multiple Hh-regulated oncogene expression, including Cyclin D1, Bcl-2, and Slug. Pharmacological blockages of SRC-1 and Hh signaling retarded CRC progression in human CRC cell xenograft mouse model. Together, our studies uncover an SRC-1/GLI2-regulated Hh signaling looping axis that promotes CRC tumorigenesis, offering an attractive strategy for CRC treatment.


Assuntos
Neoplasias Colorretais , Proteínas Hedgehog , Coativador 1 de Receptor Nuclear , Animais , Carcinogênese/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Proteínas Nucleares/genética , Coativador 1 de Receptor Nuclear/genética , Transdução de Sinais/fisiologia , Proteína Gli2 com Dedos de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA