Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38836779

RESUMO

Insulin resistance (IR) is a risk factor for the development of several major metabolic diseases. Muscle fiber composition is established early in life and is associated with insulin sensitivity. Hence, muscle fiber composition was used to identify early defects in the development of IR in healthy young individuals in the absence of clinical manifestations. Biopsies were obtained from the thigh muscle, followed by an intravenous glucose tolerance test. Indices of insulin action were calculated and cardiovascular measurements, analyses of blood and muscle were performed. Whole-body insulin sensitivity (SIgalvin) was positively related to expression of type I muscle fibers (r=0.49; P<0.001) and negatively related to resting heart rate (HR, r=-0.39; P<0.001), which was also negatively related to expression of type I muscle fibers (r=-0.41; P<0.001). Muscle protein expression of endothelial nitric oxide synthase (eNOS), whose activation results in vasodilation, was measured in two subsets of subjects expressing a high percentage of type I fibers (59±6%; HR = 57±9 beats/min; SIgalvin = 1.8±0.7 units) or low percentage of type I fibers (30±6%; HR = 71±11; SIgalvin = 0.8±0.3 units; P<0.001 for all variables vs. first group). eNOS expression was: 1. higher in subjects with high type I expression; 2. almost two-fold higher in pools of type I vs. II fibers; 3. only detected in capillaries surrounding muscle fibers; and 4. linearly associated with SIgalvin. These data demonstrate that an altered function of the autonomic nervous system and a compromised capacity for vasodilation in the microvasculature occur early in the development of IR.

2.
FASEB J ; 37(3): e22811, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786723

RESUMO

Cumulative evidence supports the hypothesis that hypoxia acts as a regulator of muscle mass. However, the underlying molecular mechanisms remain incompletely understood, particularly in human muscle. Here we examined the effect of hypoxia on signaling pathways related to ribosome biogenesis and myogenic activity following an acute bout of resistance exercise. We also investigated whether hypoxia influenced the satellite cell response to resistance exercise. Employing a randomized, crossover design, eight men performed resistance exercise in normoxia (FiO2 21%) or normobaric hypoxia (FiO2 12%). Muscle biopsies were collected in a time-course manner (before, 0, 90, 180 min and 24 h after exercise) and were analyzed with respect to cell signaling, gene expression and satellite cell content using immunoblotting, RT-qPCR and immunofluorescence, respectively. In normoxia, resistance exercise increased the phosphorylation of RPS6, TIF-1A and UBF above resting levels. Hypoxia reduced the phosphorylation of these targets by ~37%, ~43% and ~ 67% throughout the recovery period, respectively (p < .05 vs. normoxia). Resistance exercise also increased 45 S pre-rRNA expression and mRNA expression of c-Myc, Pol I and TAF-1A above resting levels, but no differences were observed between conditions. Similarly, resistance exercise increased mRNA expression of myogenic regulatory factors throughout the recovery period and Pax7+ cells were elevated 24 h following exercise in mixed and type II muscle fibers, with no differences observed between normoxia and hypoxia. In conclusion, acute hypoxia attenuates ribosome signaling, but does not impact satellite cell pool expansion and myogenic gene expression following a bout of resistance exercise in human skeletal muscle.


Assuntos
Treinamento Resistido , Células Satélites de Músculo Esquelético , Masculino , Humanos , Treinamento Resistido/métodos , Músculo Esquelético/metabolismo , Ribossomos/metabolismo , Hipóxia/metabolismo , Transdução de Sinais , Células Satélites de Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo
3.
Am J Physiol Cell Physiol ; 324(2): C477-C487, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622074

RESUMO

Gi-coupled protein receptor 81 (GPR81) was first identified in adipocytes as a receptor for l-lactate, which upon binding inhibits cyclicAMP (cAMP)-protein kinase (PKA)-cAMP-response element binding (CREB) signaling. Moreover, incubation of myotubes with lactate augments expression of GPR81 and genes and proteins involved in lactate- and energy metabolism. However, characterization of GPR81 expression and investigation of related signaling in human skeletal muscle under conditions of elevated circulating lactate levels are lacking. Muscle biopsies were obtained from healthy men and women at rest, after leg extension exercise, with or without venous infusion of sodium lactate, and 90 and 180 min after exercise (8 men and 8 women). Analyses included protein and mRNA levels of GPR81, as well as GPR81-dependent signaling molecules. GPR81 expression was 2.5-fold higher in type II glycolytic compared with type I oxidative muscle fibers, and the expression was inversely related to the percentage of type I muscle fibers. Muscle from women expressed about 25% more GPR81 protein than from men. Global PKA activity increased by 5%-8% after exercise, with no differences between trials. CREBS133 phosphorylation was reduced by 30% after exercise and remained repressed during the entire trials, with no influence of the lactate infusion. The mRNA expression of vascular endothelial growth factor (VEGF) and peroxisome-proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) were increased by 2.5-6-fold during recovery, and that of lactate dehydrogenase reduced by 15% with no differences between trials for any gene at any time point. The high expression of GPR81-protein in type II fibers suggests that lactate functions as an autocrine signaling molecule in muscle; however, lactate does not appear to regulate CREB signaling during exercise.


Assuntos
Comunicação Autócrina , Ácido Láctico , Feminino , Humanos , Masculino , Ácido Láctico/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Am J Physiol Endocrinol Metab ; 324(5): E390-E401, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791323

RESUMO

There is a debate on whether lipid-mediated insulin resistance derives from an increased or decreased capacity of muscle to oxidize fats. Here, we examine the involvement of muscle fiber composition in the metabolic responses to a 3-day fast (starvation, which results in increases in plasma lipids and insulin resistance) in two groups of healthy young subjects: 1), area occupied by type I fibers = 61.0 ± 11.8%; 2), type I area = 36.0 ± 4.9% (P < 0.001). Muscle biopsies and intravenous glucose tolerance tests were performed after an overnight fast and after starvation. Biopsies were analyzed for muscle fiber composition and mitochondrial respiration. Indices of glucose tolerance and insulin sensitivity were determined. Glucose tolerance was similar in both groups after an overnight fast and deteriorated to a similar degree in both groups after starvation. In contrast, whole body insulin sensitivity decreased markedly after starvation in group 1 (P < 0.01), whereas the decrease in group 2 was substantially smaller (P = 0.06). Nonesterified fatty acids and ß-hydroxybutyrate levels in plasma after an overnight fast were similar between groups and increased markedly and comparably in both groups after starvation, demonstrating similar degrees of lipid load. The capacity of permeabilized muscle fibers to oxidize lipids was significantly higher in group 1 versus 2, whereas there was no significant difference in pyruvate oxidation between groups. The data demonstrate that loss of whole body insulin sensitivity after short-term starvation is a function of muscle fiber composition and is associated with an elevated rather than a diminished capacity of muscle to oxidize lipids.NEW & NOTEWORTHY Whether lipid-mediated insulin resistance occurs as a result of an increased or decreased capacity of skeletal muscle to oxidize lipids has been debated. We show that a 3-day fast results in increases in circulating lipids and insulin resistance in subjects expressing a high or low proportion of type I muscle fibers. High expression of type I is associated with a higher capacity to oxidize lipids and a greater loss of insulin sensitivity after starvation.


Assuntos
Resistência à Insulina , Inanição , Humanos , Ácidos Graxos não Esterificados/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Inanição/metabolismo , Lipídeos , Metabolismo dos Lipídeos , Oxirredução
5.
Scand J Med Sci Sports ; 31(2): 303-312, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33038024

RESUMO

The repair, remodeling, and regeneration of myofibers are dependent on satellite cells (SCs), although, the distribution of SCs in different fiber types of human muscle remains inconclusive. There is also a paucity of research comparing muscle fiber characteristics in a sex-specific manner. Therefore, the aim of this study was to investigate fiber type-specific SC content in men and women. Muscle biopsies from vastus lateralis were collected from 64 young (mean age 27 ± 5), moderately trained men (n = 34) and women (n = 30). SCs were identified by Pax7-staining together with immunofluorescent analyses of fiber type composition, fiber size, and myonuclei content. In a mixed population, comparable number of SCs was associated to type I and type II fibers (0.07 ± 0.02 vs 0.07 ± 0.02 SCs per fiber, respectively). However, unlike men, women displayed a fiber type-specific distribution, with SC content being lower in type II than type I fibers (P = .041). Sex-based differences were found specifically for type II fibers, where women displayed lower SC content compared to men (P < .001). In addition, positive correlations (r-values between 0.36-0.56) were found between SC content and type I and type II fiber size in men (P = .03 and P < .01, respectively), whereas similar relationships could not be detected in women. Sex-based differences were also noted for fiber type composition and fiber size, but not for myonuclei content. We hereby provide evidence for sex-based differences present at the myocellular level, which may have important implications when studying exercise- and training-induced myogenic responses in skeletal muscle.


Assuntos
Fibras Musculares Esqueléticas/citologia , Células Satélites de Músculo Esquelético/citologia , Fatores Sexuais , Adulto , Núcleo Celular , Exercício Físico/fisiologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Fibras Musculares Esqueléticas/classificação , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/química , Músculo Esquelético/citologia , Fator de Transcrição PAX7/análise , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/química , Músculo Quadríceps/citologia , Células Satélites de Músculo Esquelético/ultraestrutura , Fatores de Tempo , Adulto Jovem
6.
Am J Physiol Endocrinol Metab ; 319(4): E792-E804, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830552

RESUMO

Lactate has been implicated as a potential signaling molecule. In myotubes, lactate incubation increases mechanistic target of rapamycin complex 1 (mTORC1)- and ERK-signaling and induces hypertrophy, indicating that lactate could be a mediator of muscle adaptations to resistance exercise. However, the potential signaling properties of lactate, at rest or with exercise, have not been explored in human tissue. In a crossover design study, 8 men and 8 women performed one-legged resistance exercise while receiving venous infusion of saline or sodium lactate. Blood was sampled repeatedly, and muscle biopsies were collected at rest and at 0, 90, and 180 min and 24 h after exercise. The primary outcomes examined were intracellular signaling, fractional protein synthesis rate (FSR), and blood/muscle levels of lactate and pH. Postexercise blood lactate concentrations were 130% higher in the Lactate trial (3.0 vs. 7.0 mmol/L, P < 0.001), whereas muscle levels were only marginally higher (27 vs. 32 mmol/kg dry wt, P = 0.003) compared with the Saline trial. Postexercise blood pH was higher in the Lactate trial (7.34 vs. 7.44, P < 0.001), with no differences in intramuscular pH. Exercise increased the phosphorylation of mTORS2448 (∼40%), S6K1T389 (∼3-fold), and p44T202/T204 (∼80%) during recovery, without any differences between trials. FSR over the 24-h recovery period did not differ between the Saline (0.067%/h) and Lactate (0.062%/h) trials. This study does not support the hypothesis that blood lactate levels can modulate anabolic signaling in contracted human muscle. Further in vivo research investigating the impact of exercised versus rested muscle and the role of intramuscular lactate is needed to elucidate its potential signaling properties.


Assuntos
Exercício Físico/fisiologia , Ácido Láctico/sangue , Ácido Láctico/farmacologia , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Treinamento Resistido , Estudos Cross-Over , Feminino , Humanos , Concentração de Íons de Hidrogênio , Infusões Intravenosas , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Cadeias Pesadas de Miosina/metabolismo , Biossíntese de Proteínas , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo , Adulto Jovem
7.
Am J Physiol Cell Physiol ; 310(11): C874-84, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053525

RESUMO

Protein synthesis is stimulated by resistance exercise and intake of amino acids, in particular leucine. Moreover, activation of mammalian target of rapamycin complex 1 (mTORC1) signaling by leucine is potentiated by the presence of other essential amino acids (EAA). However, the contribution of the branched-chain amino acids (BCAA) to this effect is yet unknown. Here we compare the stimulatory role of leucine, BCAA, and EAA ingestion on anabolic signaling following exercise. Accordingly, eight trained volunteers completed four sessions of resistance exercise during which they ingested either placebo, leucine, BCAA, or EAA (including the BCAA) in random order. Muscle biopsies were taken at rest, immediately after exercise, and following 90 and 180 min of recovery. Following 90 min of recovery the activity of S6 kinase 1 (S6K1) was greater than at rest in all four trials (Placebo

Assuntos
Aminoácidos de Cadeia Ramificada/administração & dosagem , Aminoácidos Essenciais/administração & dosagem , Leucina/administração & dosagem , Complexos Multiproteicos/agonistas , Músculo Esquelético/efeitos dos fármacos , Treinamento Resistido , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Biópsia , Glicemia/metabolismo , Proteínas de Ciclo Celular , Metabolismo Energético/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/metabolismo , Voluntários Saudáveis , Humanos , Insulina/sangue , Ácido Láctico/sangue , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Músculo Esquelético/enzimologia , Fosfoproteínas/metabolismo , Fosforilação , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Resultado do Tratamento
8.
Am J Physiol Endocrinol Metab ; 311(1): E246-51, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27245337

RESUMO

The transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α is recognized as the master regulator of mitochondrial biogenesis. However, recently a novel isoform, PGC-1α4, that specifically regulates muscle hypertrophy was discovered. Because stimulation of mechanistic target of rapamycin complex 1 (mTORC1) activity is tightly coupled to hypertrophy, we hypothesized that activation of this pathway would upregulate PGC-1α4. Eight male subjects performed heavy resistance exercise (10 × 8-12 repetitions at ∼75% of 1 repetition maximum in leg press) on four different occasions, ingesting in random order a solution containing essential amino acids (EAA), branched-chain amino acids (BCAA), leucine, or flavored water (placebo) during and after the exercise. Biopsies were taken from the vastus lateralis muscle before and immediately after exercise, as well as following 90 and 180 min of recovery. Signaling through mTORC1, as reflected in p70S6 kinase phosphorylation, was stimulated to a greater extent by the EAA and BCAA than the leucine or placebo supplements. Unexpectedly, intake of EAA or BCAA attenuated the stimulatory effect of exercise on PGC-1α4 expression by ∼50% (from a 10- to 5-fold increase with BCAA and EAA, P < 0.05) 3 h after exercise, whereas intake of leucine alone did not reduce this response. The 60% increase (P < 0.05) in the level of PGC-1α1 mRNA 90 min after exercise was uninfluenced by amino acid intake. Muscle glycogen levels were reduced and AMP-activated protein kinase α2 activity and phosphorylation of p38 mitogen-activated protein kinase enhanced to the same extent with all four supplements. In conclusion, induction of PGC-1α4 does not appear to regulate the nutritional (BCAA or EAA)-mediated activation of mTORC1 in human muscle.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Aminoácidos Essenciais/farmacologia , Leucina/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/efeitos dos fármacos , Músculo Quadríceps/metabolismo , RNA Mensageiro/efeitos dos fármacos , Treinamento Resistido , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Exercício Físico , Glicogênio/metabolismo , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fosforilação , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
FASEB J ; 29(10): 4358-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169935

RESUMO

We examined how the stimulatory effect of leucine on the mechanistic target of rapamycin complex 1 (mTORC1) pathway is affected by the presence of the remaining essential amino acids (EAAs). Nine male subjects performed resistance exercise on 4 occasions and were randomly supplied EAAs with leucine, EAAs without leucine (EAA-Leu), leucine alone, or flavored water (placebo; control). Muscle biopsies were taken from the vastus lateralis before and 60 and 90 min after exercise. Biopsies were analyzed for protein phosphorylation, kinase activity, protein-protein interactions, amino acid concentrations, and tracer incorporation. Leucine alone stimulated ribosomal protein s6 kinase 1 (S6K1) phosphorylation ∼280% more than placebo and EAA-Leu after exercise. Moreover, this response was enhanced by 60-75% after intake of EAAs compared with that of leucine alone (P < 0.05). Kinase activity of S6K1 reflected that of S6K1 phosphorylation; 60 min after exercise, the activity was elevated 3.3- and 4.2-fold with intake of leucine alone and with EAAs, respectively (P < 0.05). The interaction between mammalian target of rapamycin and regulatory-associated protein of mammalian target of rapamycin was unaltered in response to both resistance exercise and amino acid provision. Leucine alone stimulates mTORC1 signaling, although this response is enhanced by other EAAs and does not appear to be caused by alterations in mTORC1 assembly.


Assuntos
Exercício Físico/fisiologia , Leucina/farmacologia , Complexos Multiproteicos/metabolismo , Músculo Esquelético/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adulto , Aminoácidos Essenciais/administração & dosagem , Aminoácidos Essenciais/farmacologia , Estudos Cross-Over , Método Duplo-Cego , Humanos , Immunoblotting , Leucina/provisão & distribuição , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , Fatores de Tempo
10.
Am J Physiol Endocrinol Metab ; 308(6): E470-81, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25605643

RESUMO

Combining endurance and strength training in the same session has been reported to reduce the anabolic response to the latter form of exercise. The underlying mechanism, based primarily on results from rodent muscle, is proposed to involve AMPK-dependent inhibition of mTORC1 signaling. This hypothesis was tested in eight trained male subjects who in randomized order performed either resistance exercise only (R) or interval cycling followed by resistance exercise (ER). Biopsies taken from the vastus lateralis before and after endurance exercise and repeatedly after resistance exercise were assessed for glycogen content, kinase activity, protein phosphorylation, and gene expression. Mixed muscle fractional synthetic rate was measured at rest and during 3 h of recovery using the stable isotope technique. In ER, AMPK activity was elevated immediately after both endurance and resistance exercise (∼90%, P < 0.05) but was unchanged in R. Thr(389) phosphorylation of S6K1 was increased severalfold immediately after exercise (P < 0.05) in both trials and increased further throughout recovery. After 90 and 180 min recovery, S6K1 activity was elevated (∼55 and ∼110%, respectively, P < 0.05) and eukaryotic elongation factor 2 phosphorylation was reduced (∼55%, P < 0.05) with no difference between trials. In contrast, markers for protein catabolism were differently influenced by the two modes of exercise; ER induced a significant increase in gene and protein expression of MuRF1 (P < 0.05), which was not observed following R exercise only. In conclusion, cycling-induced elevation in AMPK activity does not inhibit mTOR complex 1 signaling after subsequent resistance exercise but may instead interfere with the hypertrophic response by influencing key components in protein breakdown.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ciclismo/fisiologia , Músculo Esquelético/metabolismo , Treinamento Resistido , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Adulto , Ativação Enzimática , Glicogênio/metabolismo , Humanos , Masculino , Ligação Proteica , Treinamento Resistido/métodos , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Regulação para Cima , Adulto Jovem
11.
Function (Oxf) ; 5(3): zqae005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706964

RESUMO

Exercise promotes brain plasticity partly by stimulating increases in mature brain-derived neurotrophic factor (mBDNF), but the role of the pro-BDNF isoform in the regulation of BDNF metabolism in humans is unknown. We quantified the expression of pro-BDNF and mBDNF in human skeletal muscle and plasma at rest, after acute exercise (+/- lactate infusion), and after fasting. Pro-BDNF and mBDNF were analyzed with immunoblotting, enzyme-linked immunosorbent assay, immunohistochemistry, and quantitative polymerase chain reaction. Pro-BDNF was consistently and clearly detected in skeletal muscle (40-250 pg mg-1 dry muscle), whereas mBDNF was not. All methods showed a 4-fold greater pro-BDNF expression in type I muscle fibers compared to type II fibers. Exercise resulted in elevated plasma levels of mBDNF (55%) and pro-BDNF (20%), as well as muscle levels of pro-BDNF (∼10%, all P < 0.05). Lactate infusion during exercise induced a significantly greater increase in plasma mBDNF (115%, P < 0.05) compared to control (saline infusion), with no effect on pro-BDNF levels in plasma or muscle. A 3-day fast resulted in a small increase in plasma pro-BDNF (∼10%, P < 0.05), with no effect on mBDNF. Pro-BDNF is highly expressed in human skeletal muscle, particularly in type I fibers, and is increased after exercise. While exercising with higher lactate augmented levels of plasma mBDNF, exercise-mediated increases in circulating mBDNF likely derive partly from release and cleavage of pro-BDNF from skeletal muscle, and partly from neural and other tissues. These findings have implications for preclinical and clinical work related to a wide range of neurological disorders such as Alzheimer's, clinical depression, and amyotrophic lateral sclerosis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Exercício Físico , Músculo Esquelético , Plasticidade Neuronal , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/sangue , Exercício Físico/fisiologia , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Músculo Esquelético/metabolismo , Precursores de Proteínas/metabolismo
12.
Sci Rep ; 13(1): 9418, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296176

RESUMO

The interplay between biomarkers of relevance to neuroplasticity and its association with learning and cognitive ability in old age remains poorly understood. The present study investigated acute changes in plasma concentrations of mature brain-derived neurotrophic factor (mBDNF), its precursor protein (pro-BDNF), and cortisol, in response to acute physical exercise and cognitive training interventions, their covariation and role in predicting cognitive performance. Confirmatory results provided no support for mBDNF, pro-BDNF and cortisol co-varying over time, as the acute interventions unfolded, but did confirm a positive association between mBDNF and pro-BDNF at rest. The confirmatory results did not support the hypothesis that mBDNF change following physical exercise were counteracted by temporally coupled changes in cortisol or pro-BDNF, or by cortisol at rest, in its previously demonstrated faciliatory effect on cognitive training outcome. Exploratory results instead provided indications of a general and trait-like cognitive benefit of exhibiting greater mBDNF responsiveness to acute interventions when coupled with lesser cortisol responsiveness, greater pro-BDNF responsiveness, and lower cortisol at rest. As such, the results call for future work to test whether certain biomarker profiles are associated with preserved cognition in old age.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Hidrocortisona , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Aprendizagem , Cognição
13.
J Appl Physiol (1985) ; 134(3): 753-765, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36794689

RESUMO

We have previously shown that maximal over-the-counter doses of ibuprofen, compared with low doses of acetylsalicylic acid, reduce muscle hypertrophy in young individuals after 8 wk of resistance training. Because the mechanism behind this effect has not been fully elucidated, we here investigated skeletal muscle molecular responses and myofiber adaptations in response to acute and chronic resistance training with concomitant drug intake. Thirty-one young (aged 18-35 yr) healthy men (n = 17) and women (n = 14) were randomized to receive either ibuprofen (IBU; 1,200 mg daily; n = 15) or acetylsalicylic acid (ASA; 75 mg daily; n = 16) while undergoing 8 wk of knee extension training. Muscle biopsies from the vastus lateralis were obtained before, at week 4 after an acute exercise session, and after 8 wk of resistance training and analyzed for mRNA markers and mTOR signaling, as well as quantification of total RNA content (marker of ribosome biogenesis) and immunohistochemical analysis of muscle fiber size, satellite cell content, myonuclear accretion, and capillarization. There were only two treatment × time interaction in selected molecular markers after acute exercise (atrogin-1 and MuRF1 mRNA), but several exercise effects. Muscle fiber size, satellite cell and myonuclear accretion, and capillarization were not affected by chronic training or drug intake. RNA content increased comparably (∼14%) in both groups. Collectively, these data suggest that established acute and chronic hypertrophy regulators (including mTOR signaling, ribosome biogenesis, satellite cell content, myonuclear accretion, and angiogenesis) were not differentially affected between groups and therefore do not explain the deleterious effects of ibuprofen on muscle hypertrophy in young adults.NEW & NOTEWORTHY Here we show that mTOR signaling, fiber size, ribosome biogenesis, satellite cell content, myonuclear accretion, and angiogenesis were not differentially affected between groups undergoing 8 wk of resistance training with concomitant anti-inflammatory medication (ibuprofen versus low-dose aspirin). Atrogin-1 and MuRF-1 mRNA were more downregulated after acute exercise in the low-dose aspirin group than in the ibuprofen group. Taken together it appears that these established hypertrophy regulators do not explain the previously reported deleterious effects of high doses of ibuprofen on muscle hypertrophy in young adults.


Assuntos
Treinamento Resistido , Células Satélites de Músculo Esquelético , Masculino , Humanos , Adulto Jovem , Feminino , Ibuprofeno/uso terapêutico , Ibuprofeno/farmacologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Hipertrofia , Aspirina/farmacologia , RNA , RNA Mensageiro , Serina-Treonina Quinases TOR , Células Satélites de Músculo Esquelético/fisiologia
14.
Front Endocrinol (Lausanne) ; 13: 874748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498440

RESUMO

Testosterone (T) administration has previously been shown to improve muscle size and oxidative capacity. However, the molecular mechanisms underlying these adaptations in human skeletal muscle remain to be determined. Here, we examined the effect of moderate-dose T administration on molecular regulators of muscle protein turnover and mitochondrial remodeling in muscle samples collected from young women. Forty-eight healthy, physically active, young women (28 ± 4 years) were assigned in a random double-blind fashion to receive either T (10 mg/day) or placebo for 10-weeks. Muscle biopsies collected before and after the intervention period were divided into sub-cellular fractions and total protein levels of molecular regulators of muscle protein turnover and mitochondrial remodeling were analyzed using Western blotting. T administration had no effect on androgen receptor or 5α-reductase levels, nor on proteins involved in the mTORC1-signaling pathway (mTOR, S6K1, eEF2 and RPS6). Neither did it affect the abundance of proteins associated with proteasomal protein degradation (MAFbx, MuRF-1 and UBR5) and autophagy-lysosomal degradation (AMPK, ULK1 and p62). T administration also had no effect on proteins in the mitochondria enriched fraction regulating mitophagy (Beclin, BNIP3, LC3B-I, LC3B-II and LC3B-II/I ratio) and morphology (Mitofilin), and it did not alter the expression of mitochondrial fission- (FIS1 and DRP1) or fusion factors (OPA1 and MFN2). In summary, these data indicate that improvements in muscle size and oxidative capacity in young women in response to moderate-dose T administration cannot be explained by alterations in total expression of molecular factors known to regulate muscle protein turnover or mitochondrial remodeling.


Assuntos
Mitocôndrias , Testosterona , Adulto , Feminino , Humanos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Testosterona/metabolismo , Adulto Jovem
15.
Acta Physiol (Oxf) ; 234(2): e13771, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34984845

RESUMO

AIM: Hypoxia has been shown to reduce resistance exercise-induced stimulation of protein synthesis and long-term gains in muscle mass. However, the mechanism whereby hypoxia exerts its effect is not clear. Here, we examine the effect of acute hypoxia on the activity of several signalling pathways involved in the regulation of muscle growth following a bout of resistance exercise. METHODS: Eight men performed two sessions of leg resistance exercise in normoxia or hypoxia (12% O2 ) in a randomized crossover fashion. Muscle biopsies were obtained at rest and 0, 90,180 minutes after exercise. Muscle analyses included levels of signalling proteins and metabolites associated with energy turnover. RESULTS: Exercise during normoxia induced a 5-10-fold increase of S6K1Thr389 phosphorylation throughout the recovery period, but hypoxia blunted the increases by ~50%. Phosphorylation of JNKThr183/Tyr185 and the JNK target SMAD2Ser245/250/255 was increased by 30- to 40-fold immediately after the exercise in normoxia, but hypoxia blocked almost 70% of the activation. Throughout recovery, phosphorylation of JNK and SMAD2 remained elevated following the exercise in normoxia, but the effect of hypoxia was lost at 90-180 minutes post-exercise. Hypoxia had no effect on exercise-induced Hippo or autophagy signalling and ubiquitin-proteasome related protein levels. Nor did hypoxia alter the changes induced by exercise in high-energy phosphates, glucose 6-P, lactate or phosphorylation of AMPK or ACC. CONCLUSION: We conclude that acute severe hypoxia inhibits resistance exercise-induced mTORC1- and JNK signalling in human skeletal muscle, effects that do not appear to be mediated by changes in the degree of metabolic stress in the muscle.


Assuntos
Sistema de Sinalização das MAP Quinases , Músculo Esquelético , Exercício Físico/fisiologia , Humanos , Hipóxia/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo
16.
J Clin Endocrinol Metab ; 107(7): e2729-e2737, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35405014

RESUMO

CONTEXT: Muscle fiber composition is associated with peripheral insulin action. OBJECTIVE: We investigated whether extreme differences in muscle fiber composition are associated with alterations in peripheral insulin action and secretion in young, healthy subjects who exhibit normal fasting glycemia and insulinemia. METHODS: Relaxation time following a tetanic contraction was used to identify subjects with a high or low expression of type I muscle fibers: group 1 (n = 11), area occupied by type I muscle fibers = 61.0 ± 11.8%, and group 2 (n = 8), type I area = 36.0 ± 4.9% (P < 0.001). Biopsies were obtained from the vastus lateralis muscle and analyzed for mitochondrial respiration on permeabilized fibers, muscle fiber composition, and capillary density. An intravenous glucose tolerance test was performed and indices of glucose tolerance, insulin sensitivity, and secretion were determined. RESULTS: Glucose tolerance was similar between groups, whereas whole-body insulin sensitivity was decreased by ~50% in group 2 vs group 1 (P = 0.019). First-phase insulin release (area under the insulin curve during 10 minutes after glucose infusion) was increased by almost 4-fold in group 2 vs group 1 (P = 0.01). Whole-body insulin sensitivity was correlated with percentage area occupied by type I fibers (r = 0.54; P = 0.018) and capillary density in muscle (r = 0.61; P = 0.005) but not with mitochondrial respiration. Insulin release was strongly related to percentage area occupied by type II fibers (r = 0.93; P < 0.001). CONCLUSIONS: Assessment of muscle contractile function in young healthy subjects may prove useful in identifying individuals with insulin resistance and enhanced glucose-stimulated insulin secretion prior to onset of clinical manifestations.


Assuntos
Resistência à Insulina , Doenças Musculares , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Músculo Quadríceps/metabolismo
17.
Sci Rep ; 11(1): 6453, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742064

RESUMO

This study examined acute molecular responses to concurrent exercise involving different muscles. Eight men participated in a randomized crossover-trial with two sessions, one where they performed interval cycling followed by upper body resistance exercise (ER-Arm), and one with upper body resistance exercise only (R-Arm). Biopsies were taken from the triceps prior to and immediately, 90- and 180-min following exercise. Immediately after resistance exercise, the elevation in S6K1 activity was smaller and the 4E-BP1:eIF4E interaction greater in ER-Arm, but this acute attenuation disappeared during recovery. The protein synthetic rate in triceps was greater following exercise than at rest, with no difference between trials. The level of PGC-1α1 mRNA increased to greater extent in ER-Arm than R-Arm after 90 min of recovery, as was PGC-1α4 mRNA after both 90 and 180 min. Levels of MuRF-1 mRNA was unchanged in R-Arm, but elevated during recovery in ER-Arm, whereas MAFbx mRNA levels increased slightly in both trials. RNA sequencing in a subgroup of subjects revealed 862 differently expressed genes with ER-Arm versus R-Arm during recovery. These findings suggest that leg cycling prior to arm resistance exercise causes systemic changes that potentiate induction of specific genes in the triceps, without compromising the anabolic response.


Assuntos
Braço/fisiologia , Treinamento Intervalado de Alta Intensidade/métodos , Perna (Membro)/fisiologia , Músculo Esquelético/metabolismo , Treinamento Resistido/métodos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Proteínas de Ciclo Celular/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Masculino , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
J Appl Physiol (1985) ; 131(1): 158-173, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34013752

RESUMO

Human skeletal muscle characteristics such as fiber type composition, fiber size, and myonuclear content are widely studied in clinical and sports-related contexts. Being aware of the methodological and biological variability of the characteristics is a critical aspect in study design and outcome interpretation, but comprehensive data on the variability of morphological features in human skeletal muscle are currently limited. Accordingly, in the present study, m. vastus lateralis biopsies (10 per subject) from young and healthy individuals, collected in a systematic manner, were analyzed for various characteristics using immunohistochemistry (n = 7) and SDS-PAGE (n = 25). None of the analyzed parameters, fiber type % (FT%), type I and II fiber cross-sectional area (fCSA), percentage fiber type area (fCSA%), myosin heavy chain composition (MyHC%), type IIX content, myonuclear content, or myonuclear domain, varied in a systematic manner longitudinally along the muscle or between the two legs. The average within-subject coefficient of variation for FT%, fCSA, fCSA%, and MyHC% ranged between 13% and 18% but was only 5% for fiber-specific myonuclear content, which reduced the variability for myonuclear domain size to 11%-12%. Pure type IIX fibers and type IIX MyHC were randomly distributed and present in <24% of the analyzed samples, with the average content being 0.1% and 1.1%, respectively. In conclusion, leg or longitudinal orientation does not seem to be an important aspect to consider when investigating human vastus lateralis characteristics. However, single muscle biopsies should preferably not be used when studying fiber type- and fiber size-related aspects, given the notable sample-to-sample variability.NEW & NOTEWORTHY This study provides a comprehensive analysis of the variability of key human skeletal muscle fiber characteristics in multiple sites along and between the m. vastus lateralis of healthy and active individuals. We found a notable but nonsystematic variability in fiber type and size, whereas myonuclear content was distinctively less variable, and the prevalence of type IIX fibers was random and very low. These data are important to consider when designing and interpreting studies including m. vastus lateralis biopsies.


Assuntos
Perna (Membro) , Músculo Quadríceps , Humanos , Fibras Musculares Esqueléticas , Músculo Esquelético , Cadeias Pesadas de Miosina
19.
Front Physiol ; 11: 1080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982796

RESUMO

Physical exercise (PE) has been shown to improve brain function via multiple neurobiological mechanisms promoting neuroplasticity. Cognitive exercise (CE) combined with PE may show an even greater effect on cognitive function. Brain-derived neurotrophic factor (BDNF) is important for neuroplastic signaling, may reduce with increasing age, and is confounded by fitness. The source and physiological role of human peripheral blood BDNF in plasma (pBDNF) is thought to differ from that in serum (sBDNF), and it is not yet known how pBDNF and sBDNF respond to PE and CE. A training intervention study in healthy older adults investigated the effects of acute (35 min) and prolonged (12 weeks, 30 sessions) CE and PE, both alone and in combination, on pBDNF and sBDNF. Cross-sectional associations between baseline pBDNF, sBDNF and cardiorespiratory fitness (CRF) were also investigated. Participants (65-75 years) were randomly assigned to four groups and prescribed either CE plus 35 min of rest (n = 21, 52% female); PE [performed on a cycle ergometer at moderate intensity (65-75% of individual maximal heart rate)] plus 35 min of rest (n = 27, 56% female); CE plus PE (n = 24, 46% female), or PE plus CE (n = 25, 52% female). Groups were tested for CRF using a maximal treadmill ergometer test (VO2peak); BDNF levels (collected 48 h after CRF) during baseline, after first exercise (PE or CE) and after second exercise (PE, CE or rest); and cognitive ability pre and post 12-week training. At both pre and post, pBDNF increased after CE and PE (up to 222%), and rest (∼67%), whereas sBDNF increased only after PE (up to 18%) and returned to baseline after rest. Acute but not prolonged PE increased both pBDNF and sBDNF. CE induced acute changes in pBDNF only. Baseline pBDNF was positively associated with baseline sBDNF (n = 93, r = 0.407, p < 0.001). No changes in CRF were found in any of the groups. Baseline CRF did not correlate with baseline BDNF. Even though baseline pBDNF and sBDNF were associated, patterns of changes in pBDNF and sBDNF in response to exercise were explicitly different. Further experimental scrutiny is needed to clarify the biological mechanisms of these results.

20.
Sci Rep ; 10(1): 4395, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157099

RESUMO

Multidomain lifestyle interventions represents a promising strategy to counteract cognitive decline in older age. Brain-derived neurotrophic factor (BDNF) is essential for experience-dependent plasticity and increases following physical exercise, suggesting that physical exercise may facilitate subsequent learning. In a randomized-controlled trial, healthy older adults (65-75 years) completed a 12-week behavioral intervention that involved either physical exercise immediately before cognitive training (n = 25; 13 females), physical exercise immediately after cognitive training (n = 24; 11 females), physical exercise only (n = 27; 15 females), or cognitive training only (n = 21; 12 females). We hypothesized that cognition would benefit more from cognitive training when preceded as opposed to followed by physical exercise and that the relationship between exercise-induced increases in peripheral BDNF and cognitive training outcome would be greater when cognitive training is preceded by physical exercise. Greater increases of plasma BDNF were associated with greater cognitive training gains on trained task paradigms, but only when such increases preceded cognitive training (ß = 0.14, 95% CI [0.04, 0.25]). Average cognitive training outcome did not differ depending on intervention order (ß = 0.05, 95% CI [-0.10, 0.20]). The study provides the first empirical support for a time-critical but advantageous role for post-exercise increases in peripheral BDNF for learning at an interindividual level in older adults, with implications for future multidomain lifestyle interventions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , Disfunção Cognitiva/prevenção & controle , Idoso , Terapia Cognitivo-Comportamental , Disfunção Cognitiva/sangue , Disfunção Cognitiva/psicologia , Exercício Físico , Feminino , Humanos , Masculino , Memória de Curto Prazo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA