RESUMO
Fire is a major disturbance affecting ecosystems globally, but its impact on mutualisms has received minimal attention. Here, we use a long-term field experiment to investigate the impact of different fire regimes on globally important ant-honeydew and ant-extrafloral nectar (EFN) mutualistic interactions in an Australian tropical savanna. These interactions provide ants with a key energy source, while their plant and hemipteran hosts receive protection services. We examined ant interactions on species of Eucalyptus (lacking EFNs) and Acacia (with EFNs) in three replicate plots each of burning every 2 and 3 years early in the dry season, burning late in the dry season every 2 years, and unburnt for > 25 years. The proportions of plants with ant-honeydew interactions in Acacia (44.6%) and Eucalyptus (36.3%) were double those of Acacia plants with ant-EFN interactions (18.9%). The most common ants, representing 85% of all interactions, were behaviourally dominant species of Oecophylla, Iridomyrmex and Papyrius. Fire promoted the incidence of ant interactions, especially those involving EFNs on Acacia, which occurred on only 3% of plants in unburnt plots compared with 24% in frequently burnt plots. Fire also promoted the relative incidence of behaviourally dominant ants, which are considered the highest quality mutualists. Contrary to expectations, frequent fire did not result in a switching of behaviourally dominant ant partners from forest-adapted Oecophylla to arid-adapted Iridomyrmex. Our findings that frequent fire increases ant interactions mediated by honeydew and extrafloral nectar, and promotes the quality of ant mutualists, have important implications for protective services provided by ants in highly fire-prone ecosystems.
Assuntos
Formigas , Incêndios , Pradaria , Néctar de Plantas , Animais , Formigas/fisiologia , Austrália , Acacia , Simbiose , Eucalyptus , Ecossistema , Clima TropicalRESUMO
The contribution of urban greenspaces to support biodiversity and provide benefits for people is increasingly recognized. However, ongoing management practices favor vegetation oversimplification, often limiting greenspaces to lawns and tree canopy rather than multi-layered vegetation that includes under- and midstorey, and the use of nonnative species. These practices hinder the potential of greenspaces to sustain indigenous biodiversity, particularly for taxa like insects that rely on plants for food and habitat. Yet, little is known about which plant species may maximize positive outcomes for taxonomically and functionally diverse insect communities in greenspaces. Additionally, while cities are expected to experience high rates of introductions, quantitative assessments of the relative occupancy of indigenous vs. introduced insect species in greenspace are rare, hindering understanding of how management may promote indigenous biodiversity while limiting the establishment of introduced insects. Using a hierarchically replicated study design across 15 public parks, we recorded occurrence data from 552 insect species on 133 plant species, differing in planting design element (lawn, midstorey, and tree canopy), midstorey growth form (forbs, lilioids, graminoids, and shrubs) and origin (nonnative, native, and indigenous), to assess (1) the relative contributions of indigenous and introduced insect species and (2) which plant species sustained the highest number of indigenous insects. We found that the insect community was overwhelmingly composed of indigenous rather than introduced species. Our findings further highlight the core role of multi-layered vegetation in sustaining high insect biodiversity in urban areas, with indigenous midstorey and canopy representing key elements to maintain rich and functionally diverse indigenous insect communities. Intriguingly, graminoids supported the highest indigenous insect richness across all studied growth forms by plant origin groups. Our work highlights the opportunity presented by indigenous understory and midstorey plants, particularly indigenous graminoids, in our study area to promote indigenous insect biodiversity in urban greenspaces. Our study provides a blueprint and stimulus for architects, engineers, developers, designers, and planners to incorporate into their practice plant species palettes that foster a larger presence of indigenous over regionally native or nonnative plant species, while incorporating a broader mixture of midstorey growth forms.
Assuntos
Biodiversidade , Parques Recreativos , Animais , Cidades , Ecossistema , Humanos , Insetos , PlantasRESUMO
Conservation translocations, anthropogenic movements of species to prevent their extinction, have increased substantially over the last few decades. Although multiple species are frequently moved to the same location, current translocation guidelines consider species in isolation. This practice ignores important interspecific interactions and thereby risks translocation failure. We model three different two-species systems to illustrate the inherent complexity of multispecies translocations and to assess the influence of different interaction types (consumer-resource, mutualism, and competition) on translocation strategies. We focus on how these different interaction types influence the optimal founder population sizes for successful translocations and the order in which the species are moved (simultaneous or sequential). Further, we assess the effect of interaction strength in simultaneous translocations and the time delay between translocations when moving two species sequentially. Our results show that translocation decisions need to reflect the type of interaction. While all translocations of interacting species require a minimum founder population size, which is demarked by an extinction boundary, consumer-resource translocations also have a maximum founder population limit. Above the minimum founder size, increasing the number of translocated individuals leads to a substantial increase in the extinction boundary of competitors and consumers, but not of mutualists. Competitive and consumer-resource systems benefit from sequential translocations, but the order of translocations does not change the outcomes for mutualistic interaction partners noticeably. Interspecific interactions are important processes that shape population dynamics and should therefore be incorporated into the quantitative planning of multispecies translocations. Our findings apply whenever interacting species are moved, for example, in reintroductions, conservation introductions, biological control, or ecosystem restoration.
Assuntos
Conservação dos Recursos Naturais , Atividades Humanas , Espécies Introduzidas , Animais , Demografia , Extinção Biológica , Humanos , Modelos Biológicos , Especificidade da EspécieRESUMO
Translocation, introduction, reintroduction, and assisted migrations are species conservation strategies that are attracting increasing attention, especially in the face of climate change. However, preventing the extinction of the suite of dependent species whose host species are threatened is seldom considered, and the effects on dependent species of moving threatened hosts are unclear. There is no published guidance on how to decide whether to move species, given this uncertainty. We examined the dependent-host system of 4 disparate taxonomic groups: insects on the feather-leaf banksia (Banksia brownii), montane banksia (B. montana), and Stirling Range beard heath (Leucopogon gnaphalioides); parasites of wild cats; mites and ticks on Duvaucel's gecko (Hoplodactylus duvaucelii) and tuatara (Sphenodon punctatus); and internal coccidian parasites of Cirl Bunting (Emberiza cirlus) and Hihi (Notiomystis cincta). We used these case studies to demonstrate a simple process for use in species- and community-level assessments of efforts to conserve dependents with their hosts. The insects dependent on Stirling Range beard heath and parasites on tigers (Panthera tigris) appeared to represent assemblages that would not be conserved by ex situ host conservation. In contrast, for the cases of dependent species we examined involving a single dependent species (internal parasites of birds and the mite Geckobia naultina on Duvaucel's gecko), ex situ conservation of the host species would also conserve the dependent species. However, moving dependent species with their hosts may be insufficient to maintain viable populations of the dependent species, and additional conservation strategies such as supplementing populations may be needed.
Assuntos
Migração Animal , Conservação dos Recursos Naturais , Extinção Biológica , Interações Hospedeiro-Parasita , Animais , Mudança Climática , Plantas , Austrália OcidentalRESUMO
Invertebrates with specific host species may have a high probability of extinction when their hosts have a high probability of extinction. Some of these invertebrates are more likely to go extinct than their hosts, and under some circumstances, specific actions to conserve the host may be detrimental to the invertebrate. A critical constraint to identifying such invertebrates is uncertainty about their level of host specificity. We used two host-breadth models that explicitly incorporated uncertainty in the host specificity of an invertebrate species. We devised a decision protocol to identify actions that may increase the probability of persistence of a given dependent species. The protocol included estimates from the host-breadth models and decision nodes to identify cothreatened species. We applied the models and protocol to data on 1055 insects (186 species) associated with 2 threatened (as designated by the Australian Government) plant species and 19 plant species that are not threatened to determine whether any insect herbivores have the potential to become extinct if the plant becomes extinct. According to the host-breadth models, 18 species of insect had high host specificity to the threatened plant species. From these 18 insects, the decision protocol highlighted 6 species that had a high probability of extinction if their hosts were to become extinct (3% of all insects examined). The models and decision protocol have added objectivity and rigor to the process of deciding which dependent invertebrates require conservation action, particularly when dealing with largely unknown and speciose faunas.
Assuntos
Extinção Biológica , Invertebrados , Animais , Teorema de Bayes , Medição de Risco , IncertezaRESUMO
Environmental managers must decide how to invest available resources. Researchers have previously determined how to allocate conservation resources among regions, design nature reserves, allocate funding to species conservation programs, design biodiversity surveys and monitoring programs, manage species and invest in greenhouse gas mitigation schemes. However, these issues have not been addressed with a unified theory. Furthermore, uncertainty is prevalent in environmental management, and needs to be considered to manage risks. We present a theory for optimal environmental management, synthesizing previous approaches to the topic and incorporating uncertainty. We show that the theory solves a diverse range of important problems of resource allocation, including distributing conservation resources among the world's biodiversity hotspots; surveillance to detect the highly pathogenic avian influenza H5N1 virus in Thailand; and choosing survey methods for the insect order Hemiptera. Environmental management decisions are similar to decisions about financial investments, with trade-offs between risk and reward.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Aves/virologia , Controle de Doenças Transmissíveis , Teoria da Decisão , Monitoramento Ambiental , Monitoramento Epidemiológico , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/prevenção & controle , IncertezaRESUMO
Coextinction is a poorly quantified phenomenon, but results of recent modeling suggest high losses to global biodiversity through the loss of dependent species when hosts go extinct. There are critical gaps in coextinction theory, and we outline these in a framework to direct future research toward more accurate estimates of coextinction rates. Specifically, the most critical priorities include acquisition of more accurate host data, including the threat status of host species; acquisition of data on the use of hosts by dependent species across a wide array of localities, habitats, and breadth of both hosts and dependents; development of models that incorporate correlates of nonrandom host and dependent extinctions, such as phylogeny and traits that increase extinction-proneness; and determination of whether dependents are being lost before their hosts and adjusting models accordingly. Without synergistic development of better empirical data and more realistic models to estimate the number of cothreatened species and coextinction rates, the contribution of coextinction to global declines in biodiversity will remain unknown and unmanaged.
Assuntos
Extinção Biológica , Animais , EcossistemaRESUMO
Honeydew production by Hemiptera is an ecologically important process that facilitates mutualisms and increases nutrient cycling. Accurate estimates of the amount of honeydew available in a system are essential for quantifying food web dynamics, energy flow, and the potential growth of sooty mould that inhibits plant growth. Despite the importance of honeydew, there is no standardized method to estimate its production when intensive laboratory testing is not feasible. We developed two new models to predict honeydew production, one based on insect body mass and taxonomic family, and one based on body mass and life stage. We tested the accuracy of both models' predictions for a diverse range of honeydew-producing hemipteran families (Aphididae, Pseudococcidae, Coccidae, Psyllidae, Aleyrodidae, Delphacidae, Cicadellidae). The method based on body mass and family provided more accurate estimates of honeydew production, due to large variation in honeydew production among families. We apply our methodology to a case study, the recalculation of honeydew available to invasive red imported fire ant (Solenopsis invicta) in the United States. We find that the amount of honeydew may be an order of magnitude lower than that previously estimated (2.16 versus 21.6 grams of honeydew per day) and discuss possible reasons for the difference. We anticipate that being able to estimate honeydew production based on minimal biological information will have applications to agriculture, invasion biology, forestry, and carbon farming.
Assuntos
Hemípteros , Modelos Biológicos , Animais , Hemípteros/anatomia & histologia , Hemípteros/crescimento & desenvolvimento , Espécies Introduzidas , América do Norte , Especificidade da Espécie , SimbioseRESUMO
Losing a species from a community can cause further extinctions, a process also known as coextinction. The risk of being extirpated with an interaction partner is commonly inferred from a species' host-breadth, derived from observing interactions between species. But observational data suffers from imperfect detection, making coextinction estimates highly unreliable. To address this issue and to account for data uncertainty, we fit a hierarchical N-mixture model to individual-level interaction data from a mutualistic network. We predict (1) with how many interaction partners each species interacts (to indicate their coextinction risk) and (2) how completely the community was sampled. We fit the model to simulated interactions to investigate how variation in sampling effort, interaction probability, and animal abundances influence model accuracy and apply it to an empirical dataset of flowering plants and their insect visitors. The model performed well in predicting the number of interaction partners for scenarios with high abundances, but indicated high parameter uncertainty for networks with many rare species. Yet, model predictions were generally closer to the true value than the observations. Our mutualistic plant-insect community most closely resembled the scenario of high interaction rates with low abundances. Median estimates of interaction partners were frequently much higher than the empirical data indicate, but uncertainty was high. Our analysis suggested that we only detected 14-59% of the flower-visiting insect species, indicating that our study design, which is common for pollinator studies, was inadequate to detect many species. Imperfect detection strongly affects the inferences from observed interaction networks and hence, host specificity, specialisation estimates and network metrics from observational data may be highly misleading for assessing a species' coextinction risks. Our study shows how models can help to estimate coextinction risk, but also indicates the need for better data (i.e., intensified sampling and individual-level observations) to reduce uncertainty.
Assuntos
Ecossistema , Extinção Biológica , Insetos , Modelos Teóricos , Plantas , Animais , Polinização , Risco , Especificidade da EspécieRESUMO
Coextinction (loss of dependent species with their host or partner species) presents a threat to untold numbers of organisms. Climate change may act synergistically to accelerate rates of coextinction. In this review, we present the first synthesis of the available literature and propose a novel schematic diagram that can be used when assessing the potential risk climate change represents for dependent species. We highlight traits that may increase the susceptibility of insect species to coextinction induced by climate change, suggest the most influential host characteristics, and identify regions where climate change may have the greatest impact on dependent species. The aim of this review was to provide a platform for future research, directing efforts toward taxa and habitats at greatest risk of species loss through coextinction accelerated by climate change.