Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 18(1): 12, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31987044

RESUMO

BACKGROUND: Cell death triggered by unmitigated endoplasmic reticulum (ER) stress plays an important role in physiology and disease, but the death-inducing signaling mechanisms are incompletely understood. To gain more insight into these mechanisms, the ER stressor thapsigargin (Tg) is an instrumental experimental tool. Additionally, Tg forms the basis for analog prodrugs designed for cell killing in targeted cancer therapy. Tg induces apoptosis via the unfolded protein response (UPR), but how apoptosis is initiated, and how individual effects of the various UPR components are integrated, is unclear. Furthermore, the role of autophagy and autophagy-related (ATG) proteins remains elusive. METHODS: To systematically address these key questions, we analyzed the effects of Tg and therapeutically relevant Tg analogs in two human cancer cell lines of different origin (LNCaP prostate- and HCT116 colon cancer cells), using RNAi and inhibitory drugs to target death receptors, UPR components and ATG proteins, in combination with measurements of cell death by fluorescence imaging and propidium iodide staining, as well as real-time RT-PCR and western blotting to monitor caspase activity, expression of ATG proteins, UPR components, and downstream ER stress signaling. RESULTS: In both cell lines, Tg-induced cell death depended on death receptor 5 and caspase-8. Optimal cytotoxicity involved a non-autophagic function of MAP1LC3B upstream of procaspase-8 cleavage. PERK, ATF4 and CHOP were required for Tg-induced cell death, but surprisingly acted in parallel rather than as a linear pathway; ATF4 and CHOP were independently required for Tg-mediated upregulation of death receptor 5 and MAP1LC3B proteins, whereas PERK acted via other pathways. Interestingly, IRE1 contributed to Tg-induced cell death in a cell type-specific manner. This was linked to an XBP1-dependent activation of c-Jun N-terminal kinase, which was pro-apoptotic in LNCaP but not HCT116 cells. Molecular requirements for cell death induction by therapy-relevant Tg analogs were identical to those observed with Tg. CONCLUSIONS: Together, our results provide a new, integrated understanding of UPR signaling mechanisms and downstream mediators that induce cell death upon Tg-triggered, unmitigated ER stress. Video Abstract.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Tapsigargina/metabolismo , Resposta a Proteínas não Dobradas , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Autofagia , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
2.
J Biol Chem ; 292(17): 6938-6951, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28264934

RESUMO

The Golgi/secretory pathway Ca2+/Mn2+-transport ATPase (SPCA1a) is implicated in breast cancer and Hailey-Hailey disease. Here, we purified recombinant human SPCA1a from Saccharomyces cerevisiae and measured Ca2+-dependent ATPase activity following reconstitution in proteoliposomes. The purified SPCA1a displays a higher apparent Ca2+ affinity and a lower maximal turnover rate than the purified sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1a). The lipids cholesteryl hemisuccinate, linoleamide/oleamide, and phosphatidylethanolamine inhibit and phosphatidic acid and sphingomyelin enhance SPCA1a activity. Moreover, SPCA1a is blocked by micromolar concentrations of the commonly used SERCA1a inhibitors thapsigargin (Tg), cyclopiazonic acid, and 2,5-di-tert-butylhydroquinone. Because tissue-specific targeting of SERCA2b by Tg analogues is considered for prostate cancer therapy, the inhibition of SPCA1a by Tg might represent an off-target risk. We assessed the structure-activity relationship (SAR) of Tg for SPCA1a by in silico modeling, site-directed mutagenesis, and measuring the potency of a series of Tg analogues. These indicate that Tg and the analogues are bound via the Tg scaffold but with lower affinity to the same homologous cavity as on the membrane surface of SERCA1a. The lower Tg affinity may depend on a more flexible binding cavity in SPCA1a, with low contributions of the Tg O-3, O-8, and O-10 chains to the binding energy. Conversely, the protein interaction of the Tg O-2 side chain with SPCA1a appears comparable with that of SERCA1a. These differences define a SAR of Tg for SPCA1a distinct from that of SERCA1a, indicating that Tg analogues with a higher specificity for SPCA1a can probably be developed.


Assuntos
ATPases Transportadoras de Cálcio/antagonistas & inibidores , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , Tapsigargina/química , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Cálcio/química , Colesterol/química , Desenho de Fármacos , Feminino , Humanos , Hidroquinonas/química , Indóis/química , Ácidos Linoleicos/química , Lipossomos/química , Masculino , Mutagênese Sítio-Dirigida , Ácidos Oleicos/química , Ácidos Fosfatídicos/química , Neoplasias da Próstata/tratamento farmacológico , Ligação Proteica , Conformação Proteica , Coelhos , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Esfingomielinas/química , Relação Estrutura-Atividade
3.
EMBO J ; 32(24): 3231-43, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24270570

RESUMO

The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) couples ATP hydrolysis to transport of Ca(2+). This directed energy transfer requires cross-talk between the two Ca(2+) sites and the phosphorylation site over 50 Å distance. We have addressed the mechano-structural basis for this intramolecular signal by analysing the structure and the functional properties of SERCA mutant E309Q. Glu(309) contributes to Ca(2+) coordination at site II, and a consensus has been that E309Q only binds Ca(2+) at site I. The crystal structure of E309Q in the presence of Ca(2+) and an ATP analogue, however, reveals two occupied Ca(2+) sites of a non-catalytic Ca2E1 state. Ca(2+) is bound with micromolar affinity by both Ca(2+) sites in E309Q, but without cooperativity. The Ca(2+)-bound mutant does phosphorylate from ATP, but at a very low maximal rate. Phosphorylation depends on the correct positioning of the A-domain, requiring a shift of transmembrane segment M1 into an 'up and kinked position'. This transition is impaired in the E309Q mutant, most likely due to a lack of charge neutralization and altered hydrogen binding capacities at Ca(2+) site II.


Assuntos
Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Trifosfato de Adenosina/metabolismo , Catálise , Cristalografia por Raios X , Modelos Moleculares , Fosforilação , Conformação Proteica , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
4.
Mol Membr Biol ; 32(3): 75-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26260074

RESUMO

Like other integral membrane proteins, the activity of the Sarco/Endoplasmic Reticulum Ca(2+)-ATPase (SERCA) is regulated by the membrane environment. Cholesterol is present in the endoplasmic reticulum membrane at low levels, and it has the potential to affect SERCA activity both through direct, specific interaction with the protein or through indirect interaction through changes of the overall membrane properties. There are experimental data arguing for both modes of action for a cholesterol-mediated regulation of SERCA. In the current study, coarse-grained molecular dynamics simulations are used to address how a mixed lipid-cholesterol membrane interacts with SERCA. Candidates for direct regulatory sites with specific cholesterol binding modes are extracted from the simulations. The binding pocket for thapsigargin, a nanomolar inhibitor of SERCA, has been suggested as a cholesterol binding site. However, the thapsigargin binding pocket displayed very little cholesterol occupation in the simulations. Neither did atomistic simulations of cholesterol in the thapsigargin binding pocket support any specific interaction. The current study points to a non-specific effect of cholesterol on SERCA activity, and offers an alternative interpretation of the experimental results used to argue for a specific effect.


Assuntos
Colesterol/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Humanos , Ligação Proteica , Tapsigargina/metabolismo
5.
J Biol Chem ; 289(49): 33850-61, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25301946

RESUMO

Sarcolipin (SLN) is a regulatory peptide present in sarcoplasmic reticulum (SR) from skeletal muscle of animals. We find that native rabbit SLN is modified by a fatty acid anchor on Cys-9 with a palmitic acid in about 60% and, surprisingly, an oleic acid in the remaining 40%. SLN used for co-crystallization with SERCA1a (Winther, A. M., Bublitz, M., Karlsen, J. L., Moller, J. V., Hansen, J. B., Nissen, P., and Buch-Pedersen, M. J. (2013) Nature 495, 265-2691; Ref. 1) is also palmitoylated/oleoylated, but is not visible in crystal structures, probably due to disorder. Treatment with 1 m hydroxylamine for 1 h removes the fatty acids from a majority of the SLN pool. This treatment did not modify the SERCA1a affinity for Ca(2+) but increased the Ca(2+)-dependent ATPase activity of SR membranes indicating that the S-acylation of SLN or of other proteins is required for this effect on SERCA1a. Pig SLN is also fully palmitoylated/oleoylated on its Cys-9 residue, but in a reverse ratio of about 40/60. An alignment of 67 SLN sequences from the protein databases shows that 19 of them contain a cysteine and the rest a phenylalanine at position 9. Based on a cladogram, we postulate that the mutation from phenylalanine to cysteine in some species is the result of an evolutionary convergence. We suggest that, besides phosphorylation, S-acylation/deacylation also regulates SLN activity.


Assuntos
Cisteína/química , Proteínas Musculares/química , Músculo Esquelético/metabolismo , Ácido Oleico/química , Ácido Palmítico/química , Fenilalanina/química , Processamento de Proteína Pós-Traducional , Proteolipídeos/química , Sequência de Aminoácidos , Animais , Evolução Biológica , Cristalografia por Raios X , Cisteína/metabolismo , Expressão Gênica , Hidroxilamina/química , Cinética , Lipoilação , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/classificação , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/química , Ácido Oleico/metabolismo , Ácido Palmítico/metabolismo , Fenilalanina/metabolismo , Filogenia , Proteolipídeos/classificação , Proteolipídeos/genética , Proteolipídeos/metabolismo , Coelhos , Retículo Sarcoplasmático , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Alinhamento de Sequência , Especificidade da Espécie , Suínos , Termodinâmica
6.
J Biol Chem ; 288(15): 10759-65, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23400778

RESUMO

The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) is a transmembrane ion transporter belonging to the P(II)-type ATPase family. It performs the vital task of re-sequestering cytoplasmic Ca(2+) to the sarco/endoplasmic reticulum store, thereby also terminating Ca(2+)-induced signaling such as in muscle contraction. This minireview focuses on the transport pathways of Ca(2+) and H(+) ions across the lipid bilayer through SERCA. The ion-binding sites of SERCA are accessible from either the cytoplasm or the sarco/endoplasmic reticulum lumen, and the Ca(2+) entry and exit channels are both formed mainly by rearrangements of four N-terminal transmembrane α-helices. Recent improvements in the resolution of the crystal structures of rabbit SERCA1a have revealed a hydrated pathway in the C-terminal transmembrane region leading from the ion-binding sites to the cytosol. A comparison of different SERCA conformations reveals that this C-terminal pathway is exclusive to Ca(2+)-free E2 states, suggesting that it may play a functional role in proton release from the ion-binding sites. This is in agreement with molecular dynamics simulations and mutational studies and is in striking analogy to a similar pathway recently described for the related sodium pump. We therefore suggest a model for the ion exchange mechanism in P(II)-ATPases including not one, but two cytoplasmic pathways working in concert.


Assuntos
Cálcio/metabolismo , Prótons , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Sítios de Ligação , Cálcio/química , Citosol/química , Citosol/metabolismo , Humanos , Transporte de Íons/fisiologia , Simulação de Dinâmica Molecular , Coelhos , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
7.
Nature ; 450(7172): 1036-42, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18075584

RESUMO

The sarcoplasmic reticulum Ca2+-ATPase, a P-type ATPase, has a critical role in muscle function and metabolism. Here we present functional studies and three new crystal structures of the rabbit skeletal muscle Ca2+-ATPase, representing the phosphoenzyme intermediates associated with Ca2+ binding, Ca2+ translocation and dephosphorylation, that are based on complexes with a functional ATP analogue, beryllium fluoride and aluminium fluoride, respectively. The structures complete the cycle of nucleotide binding and cation transport of Ca2+-ATPase. Phosphorylation of the enzyme triggers the onset of a conformational change that leads to the opening of a luminal exit pathway defined by the transmembrane segments M1 through M6, which represent the canonical membrane domain of P-type pumps. Ca2+ release is promoted by translocation of the M4 helix, exposing Glu 309, Glu 771 and Asn 796 to the lumen. The mechanism explains how P-type ATPases are able to form the steep electrochemical gradients required for key functions in eukaryotic cells.


Assuntos
Cálcio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Berílio , Cristalografia por Raios X , Fluoretos , Transporte de Íons , Espectrometria de Massas , Modelos Moleculares , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Fosforilação , Conformação Proteica , Coelhos , Relação Estrutura-Atividade , Tapsigargina
8.
J Biol Chem ; 286(2): 1609-17, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21047776

RESUMO

We have characterized a putative Ca(2+)-ATPase from the pathogenic bacterium Listeria monocytogenes with the locus tag lmo0841. The purified and detergent-solubilized protein, which we have named Listeria monocytogenes Ca(2+)-ATPase 1 (LMCA1), performs a Ca(2+)-dependent ATP hydrolysis and actively transports Ca(2+) after reconstitution in dioleoylphosphatidyl-choline vesicles. Despite a high sequence similarity to the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) and plasma membrane Ca(2+)-ATPase (PMCA), LMCA1 exhibits important biochemical differences such as a low Ca(2+) affinity (K(0.5) ∼80 µm) and a high pH optimum (pH ∼9). Mutational studies indicate that the unusually high pH optimum can be partially ascribed to the presence of an arginine residue (Arg-795), corresponding in sequence alignments to the Glu-908 position at Ca(2+) binding site I of rabbit SERCA1a, but probably with an exposed position in LMCA1. The arginine is characteristic of a large group of putative bacterial Ca(2+)-ATPases. Moreover, we demonstrate that H(+) is countertransported with a transport stoichiometry of 1 Ca(2+) out and 1 H(+) in per ATP hydrolyzed. The ATPase may serve an important function by removing Ca(2+) from the microorganism in environmental conditions when e.g. stressed by high Ca(2+) and alkaline pH.


Assuntos
Cálcio/metabolismo , Listeria monocytogenes/enzimologia , Listeria monocytogenes/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Trifosfato de Adenosina/metabolismo , Álcalis/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Transporte Biológico Ativo/fisiologia , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Estrutura Terciária de Proteína , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-21636921

RESUMO

Ca(2+)-ATPases are ATP-driven membrane pumps that are responsible for the transport of Ca(2+) ions across the membrane. The Listeria monocytogenes Ca(2+)-ATPase LMCA1 has been crystallized in the Ca(2+)-free state stabilized by AlF(4)(-), representing an occluded E2-P(i)-like state. The crystals belonged to space group P2(1)2(1)2 and a complete data set extending to 4.3 Šresolution was collected. A molecular-replacement solution was obtained, revealing type I packing of the molecules in the crystal. Unbiased electron-density features were observed for AlF(4)(-) and for shifts of the helices, which were indicative of a reliable structure determination.


Assuntos
ATPases Transportadoras de Cálcio/química , Listeria monocytogenes/enzimologia , ATPases Transportadoras de Cálcio/isolamento & purificação , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
10.
Prog Chem Org Nat Prod ; 115: 59-114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33797641

RESUMO

Thapsigargin, the first representative of the hexaoxygenated guaianolides, was isolated 40 years ago in order to understand the skin-irritant principles of the resin of the umbelliferous plant Thapsia garganica. The pronounced cytotoxicity of thapsigargin is caused by highly selective inhibition of the intracellular sarco-endoplasmic Ca2+-ATPase (SERCA) situated on the membrane of the endo- or sarcoplasmic reticulum. Thapsigargin is selective to the SERCA pump and to a minor extent the secretory pathway Ca2+/Mn2+ ATPase (SPCA) pump. Thapsigargin has become a tool for investigation of the importance of SERCA in intracellular calcium homeostasis. In addition, complex formation of thapsigargin with SERCA has enabled crystallization and structure determination of calcium-free states by X-ray crystallography. These results led to descriptions of the mechanism of action and kinetic properties of SERCA and other ATPases. Inhibition of SERCA depletes Ca2+ from the sarco- and endoplasmic reticulum provoking the unfolded protein response, and thereby has enabled new studies on the mechanism of cell death. Development of protocols for selective transformation of thapsigargin disclosed the chemistry and facilitated total synthesis of the molecule. Conversion of trilobolide into thapsigargin offered an economically feasible sustainable source of thapsigargin, which enables a future drug production. Principles for prodrug development were used by conjugating a payload derived from thapsigargin with a hydrophilic peptide selectively cleaved by proteases in the tumor. Mipsagargin was developed in order to obtain a drug for treatment of cancer diseases characterized by the presence of prostate specific membrane antigen (PSMA) in the neovascular tissue of the tumors. Even though mipsagargin showed interesting clinical effects the results did not encourage funding and consequently the attempt to register the drug has been abandoned. In spite of this disappointing fact, the research performed to develop the drug has resulted in important scientific discoveries concerning the chemistry, biosynthesis and biochemistry of sesquiterpene lactones, the mechanism of action of ATPases including SERCA, mechanisms for cell death caused by the unfolded protein response, and the use of prodrugs for cancer-targeting cytotoxins. The presence of toxins in only some species belonging to Thapsia also led to a major revision of the taxonomy of the genus.


Assuntos
Produtos Biológicos , Morte Celular , Desenvolvimento de Medicamentos , Masculino , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tapsigargina/farmacologia
11.
Bioorg Med Chem ; 18(15): 5634-46, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20615710

RESUMO

Removal of each of the acyl groups of thapsigargin at O-3, O-8 and O-10 significant reduces the affinity of the inhibitors to the SERCA1a pump. Replacement of the acyl groups at O-3 and O-10 with flexible residues could be performed with only a minor decrease of the affinity, whereas introduction of voluminous stiff residues caused dramatic reduction of the affinity. The results can be rationalized on the basis of the interactions of thapsigargin with the SERCA1a pump as revealed from 3D X-ray structural models of thapsigargin bound to the SERCA1a. In conclusion the results confirm and elaborate the previously suggested pharmocophore model of thapsigargin.


Assuntos
ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tapsigargina/química , Animais , Sítios de Ligação , Simulação por Computador , Coelhos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Tapsigargina/farmacologia
12.
IUCrJ ; 7(Pt 6): 1092-1101, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209320

RESUMO

The structure determination of soluble and membrane proteins can be hindered by the crystallographic phase problem, especially in the absence of a suitable homologous structure. Experimental phasing is the method of choice for novel structures; however, it often requires heavy-atom derivatization, which can be difficult and time-consuming. Here, a novel and rapid method to obtain experimental phases for protein structure determination by vanadium phasing is reported. Vanadate is a transition-state mimic of phosphoryl-transfer reactions and it has the advantage of binding specifically to the active site of numerous enzymes catalyzing this reaction. The applicability of vanadium phasing has been validated by determining the structures of three different protein-vanadium complexes, two of which are integral membrane proteins: the rabbit sarcoplasmic reticulum Ca2+-ATPase, the antibacterial peptide ATP-binding cassette transporter McjD from Escherichia coli and the soluble enzyme RNAse A from Bos taurus. Vanadium phasing was successful even at low resolution and despite severe anisotropy in the data. This method is principally applicable to a large number of proteins, representing six of the seven Enzyme Commission classes. It relies exclusively on the specific chemistry of the protein and it does not require any modifications, making it a very powerful addition to the phasing toolkit. In addition to the phasing power of this technique, the protein-vanadium complexes also provide detailed insights into the reaction mechanisms of the studied proteins.

13.
J Mol Biol ; 368(1): 1-7, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17335848

RESUMO

The recently determined crystal structure of the sarcoplasmic reticulum Ca2+-ATPase (SERCA1a) with a bound ATP analogue (AMPPCP) reveals a compact state, similar to that found in the presence of ADP and aluminium fluoride. However, although the two Ca2+-binding sites in the membrane are known to be occluded in the latter state, in the AMPPCP-bound state the Ca2+-binding sites are not occluded under conditions with physiological levels of Mg2+ and Ca2+. It has been shown that the high concentration (10 mM) of Ca2+ used for crystallization (in the presence of Mg2+) may be responsible for the discrepancy. To determine whether Ca2+ competes with Mg2+ and affects the nucleotide-binding site, we have subjected the AMPPCP and ADP:AlF4- bound forms to crystallographic analysis by anomalous difference Fourier maps, and we have compared AMPPCP-bound forms crystallized in the absence or in the presence of Mg2+. We found that Ca2+ rather than Mg2+ binds together with AMPPCP at the phosphorylation site, whereas the ADP:AlF4- complex is associated with two magnesium ions. These results address the structure of the phosphorylation site before and during phosphoryl transfer. The bound CaAMPPCP nucleotide may correspond to the activated pre-complex, formed immediately before phosphorylation, whereas the Mg(2)ADP:AlF4- transition state complex reflects the preference for Mg2+ in catalysis. In addition, we have identified a phosphatidylcholine lipid molecule bound at the cytosol-membrane interface.


Assuntos
Cálcio/metabolismo , Magnésio/metabolismo , Nucleotídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cálcio/química , Cristalografia por Raios X , Magnésio/química , Modelos Moleculares , Nucleotídeos/química
14.
Acta Crystallogr D Struct Biol ; 74(Pt 12): 1208-1218, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605135

RESUMO

Neutron macromolecular crystallography (NMX) has the potential to provide the experimental input to address unresolved aspects of transport mechanisms and protonation in membrane proteins. However, despite this clear scientific motivation, the practical challenges of obtaining crystals that are large enough to make NMX feasible have so far been prohibitive. Here, the potential impact on feasibility of a more powerful neutron source is reviewed and a strategy for obtaining larger crystals is formulated, exemplified by the calcium-transporting ATPase SERCA1. The challenges encountered at the various steps in the process from crystal nucleation and growth to crystal mounting are explored, and it is demonstrated that NMX-compatible membrane-protein crystals can indeed be obtained.


Assuntos
Cristalização/métodos , Difração de Nêutrons/métodos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Animais , Cristalografia por Raios X/métodos , Modelos Moleculares , Conformação Proteica , Coelhos
15.
J Biotechnol ; 124(4): 704-16, 2006 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-16597471

RESUMO

High-resolution structures of the Ca(2+)-ATPase have over the last 5 years added a structural dimension to our understanding of the function of this integral membrane protein. The Ca(2+)-ATPase is now by far the membrane protein where the most functionally different conformations have been described in precise structural detail. Here, we review our experience from solving Ca(2+)-ATPase structures: a purification scheme involving minimum handling of the protein to preserve natural and essential lipids, a rational approach to screening for crystals based on a limited number of polyethyleneglycols and many different salts, improving crystal quality using additives, collecting the data and finally solving the structures. We argue that certain of the lessons learned in the present study are very likely to be useful for crystallisation of eukaryotic membrane proteins in general.


Assuntos
ATPases Transportadoras de Cálcio/química , Retículo Sarcoplasmático/enzimologia , Animais , ATPases Transportadoras de Cálcio/isolamento & purificação , Cristalografia por Raios X/métodos , Eletroforese em Gel de Poliacrilamida , Coelhos
16.
Structure ; 24(4): 617-623, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27050689

RESUMO

Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca(2+)-ATPase with bound vanadate in the absence of Ca(2+). Vanadate is bound at the catalytic site as a planar VO3(-) in complex with water and Mg(2+) in a dephosphorylation transition-state-like conformation. Validating bound VO3(-) by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Cl(-) site near the dephosphorylation site. Crystallization was facilitated by trinitrophenyl (TNP)-derivatized nucleotides that bind with the TNP moiety occupying the binding pocket that normally accommodates the adenine of ATP, rationalizing their remarkably high affinity for E2P-like conformations of the Ca(2+)-ATPase. A comparison of the configurations of bound nucleotide analogs in the E2·VO3(-) structure with that in E2·BeF3(-) (E2P ground state analog) reveals multiple binding modes to the Ca(2+)-ATPase.


Assuntos
ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Vanadatos/farmacologia , Animais , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Fosforilação , Conformação Proteica , Coelhos
17.
PLoS One ; 11(9): e0163260, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27644036

RESUMO

P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site of these pumps. Future research on biological effects of commercial preparations of curcumin should consider the heterogeneity of the material.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Curcumina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Saccharomyces cerevisiae/enzimologia , Spinacia oleracea/enzimologia , Curcumina/farmacologia , Diarileptanoides
18.
Steroids ; 97: 2-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25065587

RESUMO

The skin irritating principle from Thapsia garganica was isolated, named thapsigargin and the structure elucidated. By inhibiting the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) thapsigargin provokes apoptosis in almost all cells. By conjugating thapsigargin to peptides, which are only substrates for either prostate specific antigen (PSA) or prostate specific membrane antigen (PSMA) prodrugs were created, which selectively affect prostate cancer cells or neovascular tissue in tumors. One of the prodrug is currently tested in clinical phase II. The prodrug under clinical trial has been named mipsagargin.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apiaceae/química , Inibidores Enzimáticos/farmacologia , Pró-Fármacos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias de Tecidos Moles/tratamento farmacológico , Tapsigargina/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Masculino , Camundongos , Estrutura Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Pró-Fármacos/química , Pró-Fármacos/isolamento & purificação , Neoplasias da Próstata/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Neoplasias de Tecidos Moles/patologia , Tapsigargina/química , Tapsigargina/isolamento & purificação
20.
Nat Commun ; 2: 304, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21556058

RESUMO

The structural elucidation of membrane proteins continues to gather pace, but we know little about their molecular interactions with the lipid environment or how they interact with the surrounding bilayer. Here, with the aid of low-resolution X-ray crystallography, we present direct structural information on membrane interfaces as delineated by lipid phosphate groups surrounding the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) in its phosphorylated and dephosphorylated Ca(2+)-free forms. The protein-lipid interactions are further analysed using molecular dynamics simulations. We find that SERCA adapts to membranes of different hydrophobic thicknesses by inducing local deformations in the lipid bilayers and by undergoing small rearrangements of the amino-acid side chains and helix tilts. These mutually adaptive interactions allow smooth transitions through large conformational changes associated with the transport cycle of SERCA, a strategy that may be of general nature for many membrane proteins.


Assuntos
ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA