Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 119(7): 1861-1872, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35338661

RESUMO

Oligonucleotides (ONs) are breaking through in the biopharmaceutical industry as a promising class of biotherapeutics. The main success of these molecules is due to their peculiar way of acting in the cellular process, regulating the gene expression and hence influencing the protein synthesis at a pretranslational level. Although the Food and Drug Administration (FDA) already approved a few ON-based therapeutics, their production cost strongly limits large-scale manufacturing: a situation that can be alleviated through process intensification. In this study, we address this problem by developing an efficient and continuous chromatographic purification process for ONs. In particular, we considered the chromatographic purification of an ON crude prepared by chemical synthesis using anion exchange resins. We demonstrate that in this system the competitive adsorption of the various species on the same sites of the resin leads to the displacement of the more weakly adsorbing species by the more strongly adsorbing ones. This phenomenon affects the behavior of the chromatographic units and it has been investigated in detail. Then, we developed a continuous countercurrent solvent gradient purification (MCSGP) process, which can significantly improve the productivity and buffer consumption compared to a classical single-column, batch chromatographic process.


Assuntos
Produtos Biológicos , Oligonucleotídeos , Distribuição Contracorrente/métodos , Solventes/química , Estados Unidos
2.
Biotechnol Bioeng ; 118(9): 3420-3434, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33755192

RESUMO

The increasing demand for efficient and robust processes in the purification of monoclonal antibodies (mAbs) has recently brought frontal chromatography to the forefront. Applied during the polishing step, it enables the removal of high molecular weight aggregates from the target product, achieving high purities. Typically, this process is operated in batch using a single column, which makes it intrinsically subjected to a purity-yield tradeoff. This means that high purities can only be achieved at the cost of lowering the product yield and vice versa. Recently, a two-column continuous implementation of frontal chromatography, referred to as Flow2, was developed. Despite being able of alleviating the purity-yield tradeoff typical of batch operations, the increase in the number of process parameters complicates its optimal design, with the risk of not exploiting its full potential. In this study, we developed an ad hoc design procedure (DP) suitable for the optimization of both batch frontal chromatography and Flow2 in terms of purity, yield, and productivity. This procedure provided similar results as a multiobjective optimization based on genetic algorithm but with lower computational effort. Then, batch and Flow2 operated at their optimal conditions were compared. Besides showing a more favorable Pareto front of yield and productivity at a specified purity, the Flow2 process demonstrated improved robustness compared to the batch process with respect to modifications in the loading linear velocity, washing buffer ionic strength and loading time, thus providing an appealing operation for integrated processes.


Assuntos
Anticorpos Monoclonais , Proteína Estafilocócica A/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade , Cromatografia por Troca Iônica
3.
Biotechnol Bioeng ; 117(3): 662-672, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31788778

RESUMO

Aggregates are amongst the most important product-related impurities to be removed during the downstream processing of antibodies due to their potential immunogenicity. Traditional operations use cation-exchange resins in bind-elute mode for their separation. However, frontal analysis is emerging as an alternative. In this study, a three-step process development for a membrane adsorber and a resin material is carried out, allowing the comparison between the stationary phases. Based on a screening study, optimal loading conditions are determined, which show that weak binding is favored on the membrane and strong binding on the resin. Transfer of these findings to breakthrough experiments shows that at 99% pool purity the yield is higher for the membrane, while the resin can be loaded twice as high, exceeding yields of 85%. For the investigated antibody and based on a given regeneration protocol, the productivity of the two phases is similar, ranging around 200 g/(L·h). Due to the higher loading, the resin requires about one-third less buffer than the membrane. Furthermore, the implementation of a wash step after loading allows to further increase yield by about 5%. In comparison to a generic bind-elute process, productivity and buffer consumption are improved by an order of magnitude.


Assuntos
Anticorpos Monoclonais , Cromatografia por Troca Iônica/métodos , Membranas Artificiais , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Reatores Biológicos , Células CHO , Resinas de Troca de Cátion/química , Resinas de Troca de Cátion/metabolismo , Cricetinae , Cricetulus , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Agregados Proteicos
4.
Biotechnol Bioeng ; 117(9): 2703-2714, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32436988

RESUMO

In a decade when Industry 4.0 and quality by design are major technology drivers of biopharma, automated and adaptive process monitoring and control are inevitable requirements and model-based solutions are key enablers in fulfilling these goals. Despite strong advancement in process digitalization, in most cases, the generated datasets are not sufficient for relying on purely data-driven methods, whereas the underlying complex bioprocesses are still not completely understood. In this regard, hybrid models are emerging as a timely pragmatic solution to synergistically combine available process data and mechanistic understanding. In this study, we show a novel application of the hybrid-EKF framework, that is, hybrid models coupled with an extended Kalman filter for real-time monitoring, control, and automated decision-making in mammalian cell culture processing. We show that, in the considered application, the predictive monitoring accuracy of such a framework improves by at least 35% when developed with hybrid models with respect to industrial benchmark tools based on PLS models. In addition, we also highlight the advantages of this approach in industrial applications related to conditional process feeding and process monitoring. With regard to the latter, for an industrial use case, we demonstrate that the application of hybrid-EKF as a soft sensor for titer shows a 50% improvement in prediction accuracy compared with state-of-the-art soft sensor tools.


Assuntos
Algoritmos , Técnicas de Cultura de Células/métodos , Simulação por Computador , Modelos Biológicos , Animais , Produtos Biológicos/metabolismo , Reatores Biológicos , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Biotechnol Bioeng ; 117(5): 1367-1380, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022243

RESUMO

Integrated continuous manufacturing is entering the biopharmaceutical industry. The main drivers range from improved economics, manufacturing flexibility, and more consistent product quality. However, studies on fully integrated production platforms have been limited due to the higher degree of system complexity, limited process information, disturbance, and drift sensitivity, as well as difficulties in digital process integration. In this study, we present an automated end-to-end integrated process consisting of a perfusion bioreactor, CaptureSMB, virus inactivation (VI), and two polishing steps to produce an antibody from an instable cell line. A supervisory control and data acquisition (SCADA) system was developed, which digitally integrates unit operations and analyzers, collects and centrally stores all process data, and allows process-wide monitoring and control. The integrated system consisting of bioreactor and capture step was operated initially for 4 days, after which the full end-to-end integrated run with no interruption lasted for 10 days. In response to decreasing cell-specific productivity, the supervisory control adjusted the loading duration of the capture step to obtain high capacity utilization without yield loss and constant antibody quantity for subsequent operations. Moreover, the SCADA system coordinated VI neutralization and discharge to enable constant loading conditions on the polishing unit. Lastly, the polishing was sufficiently robust to cope with significantly increased aggregate levels induced on purpose during virus inactivation. It is demonstrated that despite significant process disturbances and drifts, a robust process design and the supervisory control enabled constant (optimum) process performance and consistent product quality.


Assuntos
Anticorpos , Automação/métodos , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Perfusão/métodos , Animais , Anticorpos/análise , Anticorpos/isolamento & purificação , Anticorpos/metabolismo , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes/metabolismo , Inativação de Vírus
6.
Biotechnol Bioeng ; 117(3): 687-700, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31784982

RESUMO

Monoclonal antibodies (mAbs) and related recombinant proteins continue to gain importance in the treatment of a great variety of diseases. Despite significant advances, their manufacturing can still present challenges owing to their molecular complexity and stringent regulations with respect to product purity, stability, safety, and so forth. In this context, protein aggregates are of particular concern due to their immunogenic potential. During manufacturing, mAbs routinely undergo acidic treatment to inactivate viral contamination, which can lead to their aggregation and thereby to product loss. To better understand the underlying mechanism so as to propose strategies to mitigate the issue, we systematically investigated the denaturation and aggregation of two mAbs at low pH as well as after neutralization. We observed that at low pH and low ionic strength, mAb surface hydrophobicity increased whereas molecular size remained constant. After neutralization of acidic mAb solutions, the fraction of monomeric mAb started to decrease accompanied by an increase on average mAb size. This indicates that electrostatic repulsion prevents denatured mAb molecules from aggregation under acidic pH and low ionic strength, whereas neutralization reduces this repulsion and coagulation initiates. Limiting denaturation at low pH by d-sorbitol addition or temperature reduction effectively improved monomer recovery after neutralization. Our findings might be used to develop innovative viral inactivation procedures during mAb manufacturing that result in higher product yields.


Assuntos
Anticorpos Monoclonais , Biotecnologia/métodos , Inativação de Vírus , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Reatores Biológicos , Células CHO , Cricetinae , Cricetulus , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Agregados Proteicos , Desdobramento de Proteína , Espectrometria de Fluorescência
7.
Trends Analyt Chem ; 132: 116051, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32994652

RESUMO

Single-column (batch) preparative chromatography is the technique of choice for purification of biotherapeutics but it is often characterized by an intrinsic limitation in terms of yield-purity trade-off, especially for separations containing a larger number of product-related impurities. This drawback can be alleviated by employing multicolumn continuous chromatography. Among the different methods working in continuous mode, in this paper we will focus in particular on Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) which has been specifically designed for challenging separations of target biomolecules from their product-related impurities. The improvements come from the automatic internal recycling of the impure fractions inside the chromatographic system, which results in an increased yield without compromising the purity of the pool. In this article, steps of the manufacturing process of biopharmaceuticals will be described, as well as the advantages of continuous chromatography over batch processes, by particularly focusing on MCSGP.

8.
Biotechnol Bioeng ; 116(10): 2540-2549, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31237678

RESUMO

Due to the lack of complete understanding of metabolic networks and reaction pathways, establishing a universal mechanistic model for mammalian cell culture processes remains a challenge. Contrarily, data-driven approaches for modeling these processes lack extrapolation capabilities. Hybrid modeling is a technique that exploits the synergy between the two modeling methods. Although mammalian cell cultures are among the most relevant processes in biotechnology and indeed looks ideal for hybrid modeling, their application has only been proposed but never developed in the literature. This study provides a quantitative assessment of the improvement brought by hybrid models with respect to the state-of-the-art statistical predictive models in the context of therapeutic protein production. This is illustrated using a dataset obtained from a 3.5 L fed-batch experiment. With the goal to robustly define the process design space, hybrid models reveal a superior capability to predict the time evolution of different process variables using only the initial and process conditions in comparison to the statistical models. Hybrid models not only feature more accurate prediction results but also demonstrate better robustness and extrapolation capabilities. For the future application, this study highlights the added value of hybrid modeling for model-based process optimization and design of experiments.


Assuntos
Biotecnologia , Redes e Vias Metabólicas , Modelos Biológicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/uso terapêutico
9.
Biotechnol Bioeng ; 116(8): 1959-1972, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30997936

RESUMO

Long-term continuous protein production can be reached by perfusion operation. Through the continuous removal of waste metabolites and supply of nutrients, steady-state (SS) conditions are achieved after a certain transient period, where the conditions inside the reactor are not only uniform in space but also constant in time. Such stable conditions may have beneficial influences on the reduction of product heterogeneities. In this study, we investigated the impact of perfusion cultivation on the intracellular physiological state of a CHO cell line producing a monoclonal antibody (mAb) by global transcriptomics and proteomics. Despite stable viable cell density was maintained right from the beginning of the cultivation time, productivity decrease, and a transition phase for metabolites and product quality was observed before reaching SS conditions. These were traced back to three sources of transient behaviors being hydrodynamic flow rates, intracellular dynamics of gene expression as well as metabolism and cell line instability, superimposing each other. However, 99.4% of all transcripts and proteins reached SS during the first week or were at SS from the beginning. These results demonstrate that the stable extracellular conditions of perfusion lead to SS also of the cellular level.


Assuntos
Anticorpos Monoclonais/genética , Proteoma/genética , Transcriptoma , Animais , Anticorpos Monoclonais/análise , Células CHO , Técnicas de Cultura de Células/métodos , Cricetulus , Glicosilação , Sequenciamento de Nucleotídeos em Larga Escala , Perfusão/métodos , Proteoma/análise , Proteômica/métodos
10.
Biotechnol Bioeng ; 116(8): 1973-1985, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31038199

RESUMO

The development of mammalian cell perfusion cultures is still laborious and complex to perform due to the limited availability of scale-down models and limited knowledge of time- and cost-effective procedures. The maximum achievable viable cell density (VCDmax ), minimum cell-specific perfusion rate (CSPRmin ), cellular growth characteristics, and resulting bleed rate at steady-state operation are key variables for the effective development of perfusion cultures. In this study, we developed a stepwise procedure to use shake tubes (ST) in combination with benchtop (BR) bioreactors for the design of a mammalian cell perfusion culture at high productivity (23 pg·cell-1 ·day-1 ) and low product loss in the bleed (around 10%) for a given expression system. In a first experiment, we investigated peak VCDs in STs by the daily discontinuous medium exchange of 1 reactor volume (RV) without additional bleeding. Based on this knowledge, we performed steady-state cultures in the ST system using a working volume of 10 ml. The evaluation of the steady-state cultures allowed performing a perfusion bioreactor run at 20 × 106 cells/ml at a perfusion rate of 1 RV/day. Constant cellular environment and metabolism resulted in stable product quality patterns. This study presents a promising strategy for the effective design and development of perfusion cultures for a given expression system and underlines the potential of the ST system as a valuable scale-down tool for perfusion cultures.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Perfusão/instrumentação , Animais , Células CHO , Contagem de Células , Sobrevivência Celular , Cricetulus , Desenho de Equipamento
11.
Biotechnol Bioeng ; 116(1): 87-98, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30298905

RESUMO

In this study we introduce three process characterization approaches toward validation of continuous twin-column capture chromatography (CaptureSMB), referred to as "standard," "model assisted," and "hybrid." They are all based on a traditional risk-based approach, using process description, risk analysis, design-of-experiments (DoE), and statistical analysis as essential elements. The first approach, the "standard" approach uses a traditional experimental DoE to explore the design space of the high-ranked process parameters for the continuous process. Due to the larger number of process parameters in the continuous process, the DoE is extensive and includes a larger number of experiments than an equivalent DoE of a single column batch capture process. In the investigated case, many of the operating conditions were practically infeasible, indicating that the design space boundaries had been chosen inappropriately. To reduce experimental burden and at the same time enhance process understanding, an alternative "model assisted" approach was developed in parallel, employing a chromatographic process model to substitute experimental runs by computer simulations. Using the "model assisted" approach only experimental conditions that were feasible in terms of process yield constraints (>90%) were considered for statistical analysis. The "model assisted" approach included an optimization part that identified potential boundaries of the design space automatically. In summary, the "model assisted" approach contributed to increased process understanding compared to the "standard" approach. In this study, a "hybrid" approach was also used containing the general concepts of the "standard" approach but substituting a number of its experiments by computer simulations. The presented approaches contain essential elements of the Food and Drug Administration's process validation guideline.


Assuntos
Produtos Biológicos/isolamento & purificação , Cromatografia de Afinidade/métodos , Proteína Estafilocócica A/metabolismo , Tecnologia Farmacêutica/métodos , Simulação por Computador
12.
FASEB J ; 31(10): 4623-4635, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28679530

RESUMO

To study how the interaction between N-linked glycans and the surrounding amino acids influences oligosaccharide processing, we used protein disulfide isomerase (PDI), a glycoprotein bearing 5 N-glycosylation sites, as a model system and expressed it transiently in a Chinese hamster ovary (CHO)-S cell line. PDI was produced as both secreted Sec-PDI and endoplasmic reticulum-retained glycoprotein (ER)-PDI, to study glycan processing by ER and Golgi resident enzymes. Quantitative site-specific glycosylation profiles were obtained, and flux analysis enabled modeling site-specific glycan processing. By altering the primary sequence of PDI, we changed the glycan/protein interaction and thus the site-specific glycoprofile because of the improved enzymatic fluxes at enzymatic bottlenecks. Our results highlight the importance of direct interactions between N-glycans and surface-exposed amino acids of glycoproteins on processing in the ER and the Golgi and the possibility of changing a site-specific N-glycan profile by modulating such interactions and thus the associated enzymatic fluxes. Altering the primary protein sequence can therefore be used to glycoengineer recombinant proteins.-Losfeld, M.-E., Scibona, E., Lin, C.-W., Villiger, T. K., Gauss, R., Morbidelli, M., Aebi, M. Influence of protein/glycan interaction on site-specific glycan heterogeneity.


Assuntos
Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Animais , Células CHO , Cricetulus , Retículo Endoplasmático/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Oligossacarídeos/metabolismo , Proteínas Recombinantes/metabolismo
13.
Biotechnol Bioeng ; 115(11): 2703-2713, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30039852

RESUMO

The use of benchtop bioreactors (BRs) for the development of mammalian cell perfusion cultures is expensive and time consuming, given its complexity in equipment and operation. Scale-down models, going from liter to milliliter scale, are needed to support the rapid determination of suitable operating conditions in terms of viable cell density (VCD), perfusion rate, and medium composition. In this study, we compare the performance of steady-state perfusion cultures in orbitally shaken tube and BR systems for a given Chinese hamster ovary cell line. The developed scale-down model relied on a daily workflow designed to keep the VCD constant at specific target values. This includes: cell count, removal of excessive cells (bleeding), spin down of remaining cells, harvest of cell-free supernatant, and resuspension in fresh medium. Steady-state cultures at different VCD values, medium exchange rates and working volumes were evaluated. Shake-tube perfusion cultures allowed the prediction of cell-specific growth, glucose consumption, ammonia, and monoclonal antibody production rates for much larger BRs, but not lactate (LAC) production rates. Although charge variant profiles remained comparable, different glycosylation patterns were obtained. The differences in LAC production and glycosylation probably resulted from the discontinuous medium exchange, the poor carbon dioxide removal, and the deficient pH control. Therefore, if requested by the specific process to be developed, product quality has to be fine-tuned directly in the BR system. Altogether, the developed strategy provides a useful scale-down model for the design and optimization of perfusion cultures with strong savings in time and media consumption.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Animais , Células CHO , Contagem de Células , Sobrevivência Celular , Cricetulus , Meios de Cultura/química , Concentração de Íons de Hidrogênio
14.
Biotechnol Bioeng ; 114(2): 298-307, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27497430

RESUMO

Continuous manufacturing is currently being seriously considered in the biopharmaceutical industry as the possible new paradigm for producing therapeutic proteins, due to production cost and product quality related benefits. In this study, a monoclonal antibody producing CHO cell line was cultured in perfusion mode and connected to a continuous affinity capture step. The reliable and stable integration of the two systems was enabled by suitable control loops, regulating the continuous volumetric flow and adapting the operating conditions of the capture process. For the latter, an at-line HPLC measurement of the harvest concentration subsequent to the bioreactor was combined with a mechanistic model of the capture chromatographic unit. Thereby, optimal buffer consumption and productivity throughout the process was realized while always maintaining a yield above the target value of 99%. Stable operation was achieved at three consecutive viable cell density set points (20, 60, and 40 × 106 cells/mL), together with consistent product quality in terms of aggregates, fragments, charge isoforms, and N-linked glycosylation. In addition, different values for these product quality attributes such as N-linked glycosylation, charge variants, and aggregate content were measured at the different steady states. As expected, the amount of released DNA and HCP was significantly reduced by the capture step for all considered upstream operating conditions. This study is exemplary for the potential of enhancing product quality control and modulation by integrated continuous manufacturing. Biotechnol. Bioeng. 2017;114: 298-307. © 2016 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/metabolismo , Técnicas de Cultura de Células/métodos , Perfusão/métodos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/normas , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/isolamento & purificação , Reatores Biológicos , Células CHO , Cricetinae , Cricetulus , Agregados Proteicos , Isoformas de Proteínas/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/isolamento & purificação
15.
Biotechnol Bioeng ; 114(9): 1978-1990, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28409838

RESUMO

Mammalian cell perfusion cultures are gaining renewed interest as an alternative to traditional fed-batch processes for the production of therapeutic proteins, such as monoclonal antibodies (mAb). The steady state operation at high viable cell density allows the continuous delivery of antibody product with increased space-time yield and reduced in-process variability of critical product quality attributes (CQA). In particular, the production of a confined mAb N-linked glycosylation pattern has the potential to increase therapeutic efficacy and bioactivity. In this study, we show that accurate control of flow rates, media composition and cell density of a Chinese hamster ovary (CHO) cell perfusion bioreactor allowed the production of a constant glycosylation profile for over 20 days. Steady state was reached after an initial transition phase of 6 days required for the stabilization of extra- and intracellular processes. The possibility to modulate the glycosylation profile was further investigated in a Design of Experiment (DoE), at different viable cell density and media supplement concentrations. This strategy was implemented in a sequential screening approach, where various steady states were achieved sequentially during one culture. It was found that, whereas high ammonia levels reached at high viable cell densities (VCD) values inhibited the processing to complex glycan structures, the supplementation of either galactose, or manganese as well as their synergy significantly increased the proportion of complex forms. The obtained experimental data set was used to compare the reliability of a statistical response surface model (RSM) to a mechanistic model of N-linked glycosylation. The latter outperformed the response surface predictions with respect to its capability and reliability in predicting the system behavior (i.e., glycosylation pattern) outside the experimental space covered by the DoE design used for the model parameter estimation. Therefore, we can conclude that the modulation of glycosylation in a sequential steady state approach in combination with mechanistic model represents an efficient and rational strategy to develop continuous processes with desired N-linked glycosylation patterns. Biotechnol. Bioeng. 2017;114: 1978-1990. © 2017 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/metabolismo , Reatores Biológicos , Modelos Biológicos , Perfusão/instrumentação , Perfusão/métodos , Polissacarídeos/metabolismo , Animais , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Simulação por Computador , Desenho Assistido por Computador , Cricetulus , Desenho de Equipamento , Análise de Falha de Equipamento , Glicosilação
16.
Mol Pharm ; 14(1): 124-134, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27936802

RESUMO

Fluorescent poly(ε-caprolactone)-based nanoparticles (NPs) have been synthesized and successfully loaded with a titanium organometallic compound as a mimic of a water-insoluble drug. The nature of this nanovector enabled us to combine the quantification of the metal in tissues after systemic administration in healthy immunocompetent mice by inductively coupled plasma mass spectroscopy (ICP-MS) followed by the visualization of NPs in organ sections by confocal microscopy. This innovative method of nanodrug screening has enabled us to elucidate the crucial parameters of their kinetics. The organometallic compound is a good mimic of most anticancer drugs, and this approach is an interesting starting point to design the relevance of a broad range of nanoformulations in terms of safety and targeted delivery of the cargoes.


Assuntos
Materiais Biocompatíveis/química , Nanopartículas/química , Polímeros/química , Animais , Antineoplásicos/química , Química Farmacêutica/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Camundongos , Microscopia Eletrônica de Transmissão/métodos , Compostos Organometálicos/química , Poliésteres/química , Titânio/química
17.
Langmuir ; 33(38): 9687-9693, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28880090

RESUMO

We have developed a new class of thermoresponsive colloids that can exhibit a sharp reversible transition between dispersion and aggregation in binary BuAc/EtOH solvents based on the UCST (upper critical solution temperature)-type phase separation. This is realized by grafting linear PMMA-BA (random) copolymer onto the colloidal particles. We have selected TiO2/PS hybrid spheres (HSs) as a model system to demonstrate our general design concept. By grafting the linear PMMA-BA copolymer onto the HS surface, with the molecular weight from 30 to 40 kDa, we found that the thermoresponsive transition between dispersion and aggregation is fast, sharp, and reversible. At high mass fractions of the HSs, we have even observed a sharp transition between dispersion and gelation (or phase separation). The transition temperature can be tuned by varying the binary solvent composition, BuAc/EtOH, and the molecular weight of the grafted linear copolymer in the range from 5 to 55 °C. One of the most important features of this work is that the thermoresponsive materials used in organic solvents are initially synthesized in water with widely applied conventional (instead of research-based) techniques, thus being well suited for industrial production. In addition, the proposed approach is rather general and applicable to realizing the thermoresponsive transition for various types of colloids and nanoparticles.

18.
Langmuir ; 33(49): 14038-14044, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29151350

RESUMO

Surface chemistry is believed to be the key parameter affecting the aggregation and breakage of colloidal suspensions when subjected to shear. To date, only a few works dealt with the understanding of the role of the physical and chemical properties of the particles' surface upon aggregation under shear. Previous studies suggested that surface modifications strongly affect polymer particles' adhesion, but it was very challenging to demonstrate this effect and monitor these alterations upon prolonged exposure to shear forces. More importantly, the mechanisms leading to these changes remain elusive. In this work, shear-induced aggregation experiments of polymer colloidal particles have been devised with the specific objective of highlighting material transfer and clarifying the role of the softness of the particle's surface. To achieve this goal, polymer particles with a core-shell structure comprising fluorescent groups have been prepared so that the surface's softness could be tuned by the addition of monomer acting as a plasticizer and the percentage of fluorescent particles could be recorded over time via confocal microscopy to detect eventual material transfer among different particles. For the first time, material exchange occurring on the soft surface of core-shell polymer microparticles upon aggregation under shear was observed and proved. More aptly, starting from a 50% labeled/nonlabeled mixture, an increase in the percentage of particles showing a fluorescent signature was recorded over time, reaching a fraction of 70% after 5 h.

19.
Langmuir ; 33(5): 1180-1188, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28135093

RESUMO

Shearing lyophobic colloidal suspensions can lead to aggregation, followed by gelation, if the formed clusters grow to sizes large enough to percolate. If the temperature is set over the glass transition temperature of the suspended material, the particles embedded in the same aggregate start to coalesce with one another. Coalescence occurs to the finite viscosity of the particles' material, which leads to material diffusion from particle to particle. The driving force of this process is the reduction of the particle-dispersant interface and, as a consequence, the decrease the center-to-center separation of the particles. This leads to decreased cluster size, and hence a delayed gelation. Simultaneously, coalescence reinforces the particle-particle bonds formed upon aggregation, leading to clusters that are able to resist higher hydrodynamic forces before breaking up, hence leading to faster gelation. These two competing effects, combined with the natural complexity of colloidal aggregation makes it rather difficult to understand and predict which trend becomes dominant. In the present work, the shear-induced gelation of model polymeric colloidal systems with different glass transition temperatures has been studied. Starting with their interaction potential we investigate the impact of temperature on the gel time in concentrated suspensions (φ = 5%) under steady shear, followed by the effect of temperature on the stress-resistance of fully destabilized clusters under agitation. The results of the present work allow for a systematic view and deepened understanding of the factors governing shear-induced gelation in the presence of coalescence.

20.
Methods ; 104: 33-40, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26707204

RESUMO

Cell culture process monitoring in monoclonal antibody (mAb) production is essential for efficient process development and process optimization. Currently employed online, at line and offline methods for monitoring productivity as well as process reproducibility have their individual strengths and limitations. Here, we describe a matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)-based on a microarray for mass spectrometry (MAMS) technology to rapidly monitor a broad panel of analytes, including metabolites and proteins directly from the unpurified cell supernatant or from host cell culture lysates. The antibody titer is determined from the intact antibody mass spectra signal intensity relative to an internal protein standard spiked into the supernatant. The method allows a semi-quantitative determination of light and heavy chains. Intracellular mass profiles for metabolites and proteins can be used to track cellular growth and cell productivity.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Técnicas de Cultura de Células/métodos , Análise Serial de Proteínas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Anticorpos Monoclonais/química , Formação de Anticorpos , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA