Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 20(11): e3001851, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36346780

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19-associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin, a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Via de Sinalização Hippo , Antivirais/farmacologia
2.
Mol Ther ; 32(5): 1311-1327, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449314

RESUMO

While studying transgene expression after systemic administration of lentiviral vectors, we found that splenic B cells are robustly transduced, regardless of the types of pseudotyped envelope proteins. However, the administration of two different pseudotypes resulted in transduction of two distinct B cell populations, suggesting that each pseudotype uses unique and specific receptors for its attachment and entry into splenic B cells. Single-cell RNA sequencing analysis of the transduced cells demonstrated that different pseudotypes transduce distinct B cell subpopulations characterized by specific B cell receptor (BCR) genotypes. Functional analysis of the BCRs of the transduced cells demonstrated that BCRs specific to the pseudotyping envelope proteins mediate viral entry, enabling the vectors to selectively transduce the B cell populations that are capable of producing antibodies specific to their envelope proteins. Lentiviral vector entry via the BCR activated the transduced B cells and induced proliferation and differentiation into mature effectors, such as memory B and plasma cells. BCR-mediated viral entry into clonally specific B cell subpopulations raises new concepts for understanding the biodistribution of transgene expression after systemic administration of lentiviral vectors and offers new opportunities for BCR-targeted gene delivery by pseudotyped lentiviral vectors.


Assuntos
Linfócitos B , Vetores Genéticos , Lentivirus , Receptores de Antígenos de Linfócitos B , Transdução Genética , Transgenes , Proteínas do Envelope Viral , Lentivirus/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Animais , Camundongos , Linfócitos B/metabolismo , Linfócitos B/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Tropismo Viral , Humanos , Internalização do Vírus
3.
Am J Pathol ; 190(4): 844-861, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035058

RESUMO

Zika virus (ZIKV) is a reemerging human pathogen that causes congenital abnormalities, including microcephaly and eye disease. The cellular/molecular basis of ZIKV and host interactions inducing ocular and neuronal pathogenesis are unclear. Herein, we noted that the Hippo/Salvador-Warts-Hippo signaling pathway, which controls organ size through progenitor cell proliferation and differentiation, is dysregulated after ZIKV infection. In human fetal retinal pigment epithelial cells, there is an early induction of transcriptional coactivator, Yes-associated protein (YAP), which is later degraded with a corresponding activation of the TANK binding kinase 1/interferon regulatory factor 3 type I interferon pathway. YAP/transcriptional co-activator with a PDZ-binding domain (TAZ) silencing results in reduced ZIKV replication, indicating a direct role of Hippo pathway in regulating ZIKV infection. Using an in vivo Ifnar1-/- knockout mouse model, ZIKV infection was found to reduce YAP/TAZ protein levels while increasing phosphorylated YAP Ser127 in the retina and brain. Hippo pathway is activated in major cellular components of the blood-brain barrier, including endothelial cells and astrocytes. In addition, this result suggests AMP-activated protein kinase signaling pathway's role in regulating YAP/TAZ in ZIKV-infected cells. These data demonstrate that ZIKV infection might initiate a cross talk among AMP-activated protein kinase-Hippo-TBK1 pathways, which could regulate antiviral and energy stress responses during oculoneuronal inflammation.


Assuntos
Inflamação/patologia , Doenças Neurodegenerativas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptor de Interferon alfa e beta/fisiologia , Replicação Viral , Infecção por Zika virus/complicações , Zika virus/isolamento & purificação , Animais , Via de Sinalização Hippo , Inflamação/virologia , Masculino , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/virologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Infecção por Zika virus/virologia
4.
Cell Commun Signal ; 17(1): 132, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31638994

RESUMO

Phosphatidylserine (PtdSer) is usually present only in the inner leaf of the lipid bilayers of the cell membrane, but is exposed on the outer leaf when cells are activated and/or die. Exposure of PtdSer has physiological functions. For example, the PtdSer exposed on dead cells can serve as "eat-me signals" for phagocytes to clear dead cells by phagocytosis, which prevents autoimmune reactions and inflammation. HIV-1 induces PtdSer exposure on infected and target cells and it also exposes PtdSer on its envelope. Recent studies showed that PtdSer exposed on the HIV-1 envelope and infected and target cells can facilitate or inhibit multiple steps of HIV-1 replication.At the virus binding and entry steps, interaction of the envelope PtdSer and the host's PtdSer-binding molecules can enhance HIV-1 infection of cells by facilitating virus attachment. At the virus budding step, HIV-1 can be trapped on the cell surface by one family of PtdSer-binding receptors, T-cell immunoglobulin mucin domain proteins (TIM)-1, 3, and 4 expressed on virus producer cells. Although this trapping can inhibit release of HIV-1, one of the HIV-1 accessory gene products, Negative Factor (Nef), can counteract virus trapping by TIM family receptors (TIMs) by inducing the internalization of these receptors. HIV-1 infection can induce exposure of PtdSer on infected cells by inducing cell death. A soluble PtdSer-binding protein in serum, protein S, bridges PtdSer exposed on HIV-1-infected cells and a receptor tyrosine kinase, Mer, expressed on macrophages and mediate phagocytic clearance of HIV-1 infected cells. HIV-1 can also induce exposure of PtdSer on target cells at the virus binding step. Binding of HIV-1 envelope proteins to its receptor (CD4) and co-receptors (CXCR4 or CCR5) elicit signals that induce PtdSer exposure on target cells by activating TMEM16F, a phospholipid scramblase. PtdSer exposed on target cells enhances HIV-1 infection by facilitating fusion between the viral envelope and target cell membrane. Because various other phospholipid channels mediating PtdSer exposure have recently been identified, it will be of interest to examine how HIV-1 actively interacts with these molecules to manipulate PtdSer exposure levels on cells and viral envelope to support its replication.


Assuntos
Membrana Celular/metabolismo , HIV-1/fisiologia , Fosfatidilserinas/metabolismo , Replicação Viral , Animais , Humanos , Macrófagos/citologia , Macrófagos/virologia , Internalização do Vírus
5.
J Virol ; 88(8): 4275-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24478428

RESUMO

UNLABELLED: We recently demonstrated that a soluble protein, Gas6, can facilitate viral entry by bridging viral envelope phosphatidylserine to Axl, a receptor tyrosine kinase expressed on target cells. The interaction between phosphatidylserine, Gas6, and Axl was originally shown to be a molecular mechanism through which phagocytes recognize phosphatidylserine exposed on dead cells. Since our initial report, several groups have confirmed that Axl/Gas6, as well as other phosphatidylserine receptors, facilitate entry of dengue, West Nile, and Ebola viruses. Virus binding by viral envelope phosphatidylserine is now a viral entry mechanism generalized to many families of viruses. In addition to Axl/Gas6, various molecules are known to recognize phosphatidylserine; however, the effects of these molecules on virus binding and entry have not been comprehensively evaluated and compared. In this study, we examined most of the known human phosphatidylserine-recognizing molecules, including MFG-E8, TIM-1, -3, and -4, CD300a, BAI1, and stabilin-1 and -2, for their abilities to facilitate virus binding and infection. Using pseudotyped lentiviral vectors, we found that a soluble phosphatidylserine-binding protein, MFG-E8, enhances transduction. Cell surface receptors TIM-1 and -4 also enhance virus binding/transduction. The extent of enhancement by these molecules varies, depending on the type of pseudotyping envelope proteins. Mutated MFG-E8, which binds viral envelope phosphatidylserine without bridging virus to cells, but, surprisingly, not annexin V, which has been used to block phagocytosis of dead cells by concealing phosphatidylserine, efficiently blocks these phosphatidylserine-dependent viral entry mechanisms. These results provide insight into understanding the role of viral envelope phosphatidylserine in viral infection. IMPORTANCE: Envelope phosphatidylserine has previously been shown to be important for replication of various envelope viruses, but details of this mechanism(s) were unclear. We were the first to report that a bifunctional serum protein, Gas6, bridges envelope phosphatidylserine to a cell surface receptor, Axl. Recent studies demonstrated that many envelope viruses, including vaccinia, dengue, West Nile, and Ebola viruses, utilize Axl/Gas6 to facilitate their entry, suggesting that the phosphatidylserine-mediated viral entry mechanism can be shared by various enveloped viruses. In addition to Axl/Gas6, various molecules are known to recognize phosphatidylserine; however, the effects of these molecules on virus binding and entry have not been comprehensively evaluated and compared. In this study, we examined most human phosphatidylserine-recognizing molecules for their abilities to facilitate viral infection. The results provide insights into the role(s) of envelope phosphatidylserine in viral infection, which can be applicable to the development of novel antiviral reagents that block phosphatidylserine-mediated viral entry.


Assuntos
Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Fenômenos Fisiológicos Virais , Linhagem Celular , Humanos , Fagocitose , Fosfatidilserinas/metabolismo , Receptores de Superfície Celular/genética , Receptores Virais/genética , Ligação Viral , Viroses/genética , Viroses/metabolismo , Viroses/virologia , Internalização do Vírus , Vírus/genética
6.
J Gene Med ; 16(1-2): 11-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24436117

RESUMO

BACKGROUND: We previously developed an antibody-avidin fusion protein (ch128.1Av) specific for the human transferrin receptor 1 (TfR1; CD71) to be used as a delivery vector for cancer therapy and showed that ch128.1Av delivers the biotinylated plant toxin saporin-6 into malignant B cells. However, as a result of widespread expression of TfR1, delivery of the toxin to normal cells is a concern. Therefore, we explored the potential of a dual targeted lentiviral-mediated gene therapy strategy to restrict gene expression to malignant B cells. Targeting occurs through the use of ch128.1Av or its parental antibody without avidin (ch128.1) and through transcriptional regulation using an immunoglobulin promoter. METHODS: Flow cytometry was used to detect the expression of enhanced green fluorescent protein (EGFP) in a panel of cell lines. Cell viability after specific delivery of the therapeutic gene FCU1, a chimeric enzyme consisting of cytosine deaminase genetically fused to uracil phosphoribosyltransferse that converts the 5-fluorocytosine (5-FC) prodrug into toxic metabolites, was monitored using the MTS or WST-1 viability assay. RESULTS: We found that EGFP was specifically expressed in a panel of human malignant B-cell lines, but not in human malignant T-cell lines. EGFP expression was observed in all cell lines when a ubiquitous promoter was used. Furthermore, we show the decrease of cell viability in malignant plasma cells in the presence of 5-FC and the FCU1 gene. CONCLUSIONS: The present study demonstrates that gene expression can be restricted to malignant B cells and suggests that this dual targeted gene therapy strategy may help to circumvent the potential side effects of certain TfR1-targeted protein delivery approaches.


Assuntos
Antígenos CD/genética , Antígenos CD/imunologia , Linfócitos B/citologia , Lentivirus/genética , Receptores da Transferrina/genética , Receptores da Transferrina/imunologia , Proteínas Recombinantes de Fusão/genética , Anticorpos/genética , Anticorpos/imunologia , Antígenos CD/biossíntese , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Citosina Desaminase/genética , Flucitosina/metabolismo , Terapia Genética/efeitos adversos , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Proteínas de Fluorescência Verde , Células HEK293 , Humanos , Células Jurkat , Neoplasias/genética , Neoplasias/terapia , Pentosiltransferases/genética , Pró-Fármacos/efeitos adversos , Pró-Fármacos/uso terapêutico , Regiões Promotoras Genéticas , Receptores da Transferrina/biossíntese , Linfócitos T/citologia , Linfócitos T/metabolismo , Transdução Genética , Vírus da Estomatite Vesicular Indiana/genética
7.
J Virol ; 87(4): 2094-108, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192877

RESUMO

Sophisticated retargeting systems for lentiviral vectors have been developed in recent years. Most seek to suppress the viral envelope's natural tropism while modifying the receptor-binding domain such that its tropism is determined by the specificity of the engineered ligand-binding motif. Here we took advantage of the natural tropism of Nipah virus (NiV), whose attachment envelope glycoprotein has picomolar affinity for ephrinB2, a molecule proposed as a molecular marker of "stemness" (present on embryonic, hematopoietic, and neural stem cells) as well as being implicated in tumorigenesis of specific cancers. NiV entry requires both the fusion (F) and attachment (G) glycoproteins. Truncation of the NiV-F cytoplasmic tail (T5F) alone, combined with full-length NiV-G, resulted in optimal titers of NiV-pseudotyped particles (NiVpp) (∼10(6) IU/ml), even without ultracentrifugation. To further enhance the infectivity of NiVpp, we engineered a hyperfusogenic NiV-F protein lacking an N-linked glycosylation site (T5FΔN3). T5FΔN3/wt G particles exhibited enhanced infectivity on less permissive cell lines and efficiently targeted ephrinB2(+) cells even in a 1,000-fold excess of ephrinB2-negative cells, all without any loss of specificity, as entry was abrogated by soluble ephrinB2. NiVpp also transduced human embryonic, hematopoietic, and neural stem cell populations in an ephrinB2-dependent manner. Finally, intravenous administration of the luciferase reporter NiVpp-T5FΔN3/G to mice resulted in signals being detected in the spleen and lung but not in the liver. Bypassing the liver sink is a critical barrier for targeted gene therapy. The extraordinary specificity of NiV-G for ephrinB2 holds promise for targeting specific ephrinB2(+) populations in vivo or in vitro.


Assuntos
Efrina-B2/metabolismo , Vetores Genéticos , Lentivirus/genética , Vírus Nipah/fisiologia , Receptores Virais/metabolismo , Células-Tronco/virologia , Internalização do Vírus , Animais , Células Cultivadas , Humanos , Camundongos , Biologia Molecular/métodos , Vírus Nipah/genética , Transdução Genética
8.
Brain Behav Immun ; 26(4): 635-41, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22306453

RESUMO

Clinical studies suggest that stress-related biobehavioral factors can accelerate the progression of hematopoietic cancers such as acute lymphoblastic leukemia (ALL), but it is unclear whether such effects are causal or what biological pathways mediate such effects. Given the network of sympathetic nervous system (SNS) fibers that innervates the bone marrow to regulate normal (non-leukemic) hematopoietic progenitor cells, we tested the possibility that stress-induced SNS signaling might also affect ALL progression. In an orthotopic mouse model, Nalm-6 human pre-B ALL cells were transduced with the luciferase gene for longitudinal bioluminescent imaging and injected i.v. into male SCID mice for bone marrow engraftment. Two weeks of daily restraint stress significantly enhanced ALL tumor burden and dissemination in comparison to controls, and this effect was blocked by the ß-adrenergic antagonist, propranolol. Although Nalm-6 ALL cells expressed mRNA for ß1- and ß3-adrenergic receptors, they showed no evidence of cAMP signaling in response to norepinephrine, and norepinephrine failed to enhance Nalm-6 proliferation in vitro. These results show that chronic stress can accelerate the progression of human pre-B ALL tumor load via a ß-adrenergic signaling pathway that likely involves indirect regulation of ALL biology via alterations in the function of other host cell types such as immune cells or the bone marrow microenvironment.


Assuntos
Leucemia Experimental/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Estresse Psicológico/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Animais , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Leucemia Experimental/psicologia , Masculino , Camundongos , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/psicologia , Propranolol/farmacologia , Restrição Física , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/imunologia
9.
Nat Med ; 11(3): 346-52, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15711560

RESUMO

Targeted gene transduction to specific tissues and organs through intravenous injection would be the ultimate preferred method of gene delivery. Here, we report successful targeting in a living animal through intravenous injection of a lentiviral vector pseudotyped with a modified chimeric Sindbis virus envelope (termed m168). m168 pseudotypes have high titer and high targeting specificity and, unlike other retroviral pseudotypes, have low nonspecific infectivity in liver and spleen. A mouse cancer model of metastatic melanoma was used to test intravenous targeting with m168. Human P-glycoprotein was ectopically expressed on the surface of melanoma cells and targeted by the m168 pseudotyped lentiviral vector conjugated with antibody specific for P-glycoprotein. m168 pseudotypes successfully targeted metastatic melanoma cells growing in the lung after systemic administration by tail vein injection. Further development of this targeting technology should result in applications not only for cancers but also for genetic, infectious and immune diseases.


Assuntos
Marcação de Genes/métodos , Melanoma Experimental/terapia , Sindbis virus/genética , Animais , Terapia Genética/métodos , Vetores Genéticos , Lentivirus/genética , Luciferases/biossíntese , Melanoma Experimental/secundário , Camundongos , Proteínas do Envelope Viral/genética
10.
Microbiol Spectr ; 10(5): e0113722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36169338

RESUMO

Zika virus (ZIKV), a mosquito-borne human pathogen, causes dire congenital brain developmental abnormalities in children of infected mothers. The global health crisis precipitated by this virus has led to a concerted effort to develop effective therapies and prophylactic measures although, unfortunately, not very successfully. The error-prone nature of RNA viral genome replication tends to promote evolution of novel viral strains, which could cause epidemics and pandemics. As such, our objective was to develop a safe and effective replication-deficient ZIKV vector-based vaccine candidate. We approached this by generating a ZIKV vector containing only the nonstructural (NS) 5'-untranslated (UTR)-NS-3' UTR sequences, with the structural proteins capsid (C), precursor membrane (prM), and envelope (E) (CprME) used as a packaging system. We efficiently packaged replication-deficient Zika vaccine particles in human producer cells and verified antigen expression in vitro. In vivo studies showed that, after inoculation in neonatal mice, the Zika vaccine candidate (ZVAX) was safe and did not produce any replication-competent revertant viruses. Immunization of adult, nonpregnant mice showed that ZVAX protected mice from lethal challenge by limiting viral replication. We then evaluated the safety and efficacy of ZVAX in pregnant mice, where it was shown to provide efficient maternal and fetal protection against Zika disease. Mass cytometry analysis showed that vaccinated pregnant animals had high levels of splenic CD8+ T cells and effector memory T cell responses with reduced proinflammatory cell responses, suggesting that endogenous expression of NS proteins by ZVAX induced cellular immunity against ZIKV NS proteins. We also investigated humoral immunity against ZIKV, which is potentially induced by viral proteins present in ZVAX virions. We found no significant difference in neutralizing antibody titer in vaccinated or unvaccinated challenged animals; therefore, it is likely that cellular immunity plays a major role in ZVAX-mediated protection against ZIKV infection. In conclusion, we demonstrated ZVAX as an effective inducer of protective immunity against ZIKV, which can be further evaluated for potential prophylactic application in humans. IMPORTANCE This research is important as it strives to address the critical need for effective prophylactic measures against the outbreak of Zika virus (ZIKV) and outlines an important vaccine technology that could potentially be used to induce immune responses against other pandemic-potential viruses.


Assuntos
Vacinas Virais , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Criança , Camundongos , Humanos , Animais , Zika virus/genética , Infecção por Zika virus/prevenção & controle , Linfócitos T CD8-Positivos , Regiões 3' não Traduzidas , Vacinas Virais/genética , Anticorpos Antivirais , Proteínas do Envelope Viral/genética , Mosquitos Vetores , Anticorpos Neutralizantes , Modelos Animais de Doenças
11.
bioRxiv ; 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35441167

RESUMO

SARS-CoV-2, responsible for the COVID-19 pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19 associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples, and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.

12.
J Virol ; 84(14): 6923-34, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20484510

RESUMO

Redirecting the tropism of viral vectors enables specific transduction of selected cells by direct administration of vectors. We previously developed targeting lentiviral vectors by pseudotyping with modified Sindbis virus envelope proteins. These modified Sindbis virus envelope proteins have mutations in their original receptor-binding regions to eliminate their natural tropisms, and they are conjugated with targeting proteins, including antibodies and peptides, to confer their tropisms on target cells. We investigated whether our targeting vectors interact with DC-SIGN, which traps many types of viruses and gene therapy vectors by binding to the N-glycans of their envelope proteins. We found that these vectors do not interact with DC-SIGN. When these vectors were produced in the presence of deoxymannojirimycin, which alters the structures of N-glycans from complex to high mannose, these vectors used DC-SIGN as their receptor. Genetic analysis demonstrated that the N-glycans at E2 amino acid (aa) 196 and E1 aa 139 mediate binding to DC-SIGN, which supports the results of a previous report of cryoelectron microscopy analysis. In addition, we investigated whether modification of the N-glycan structures could activate serum complement activity, possibly by the lectin pathway of complement activation. DC-SIGN-targeted transduction occurs in the presence of human serum complement, demonstrating that high-mannose structure N-glycans of the envelope proteins do not activate human serum complement. These results indicate that the strategy of redirecting viral vectors according to alterations of their N-glycan structures would enable the vectors to target specific cells types expressing particular types of lectins.


Assuntos
Moléculas de Adesão Celular/metabolismo , Vetores Genéticos , Lectinas Tipo C/metabolismo , Lentivirus , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Sindbis virus/metabolismo , Proteínas do Envelope Viral , Animais , Configuração de Carboidratos , Sequência de Carboidratos , Moléculas de Adesão Celular/genética , Linhagem Celular , Proteínas do Sistema Complemento/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Lectinas Tipo C/genética , Lentivirus/genética , Lentivirus/metabolismo , Dados de Sequência Molecular , Polissacarídeos/química , Polissacarídeos/genética , Receptores de Superfície Celular/genética , Sindbis virus/genética , Transdução Genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
13.
Virology ; 560: 17-33, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34020328

RESUMO

Envelope phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtr) have been shown to mediate binding of enveloped viruses. However, commonly used PtdSer binding molecules such as Annexin V cannot block PtdSer-mediated viral infection. Lack of reagents that can conceal envelope PtdSer and PtdEtr and subsequently inhibit infection hinders elucidation of the roles of the envelope phospholipids in viral infection. Here, we developed sTIM1dMLDR801, a reagent capable of blocking PtdSer- and PtdEtr-dependent infection of enveloped viruses. Using sTIM1dMLDR801, we found that envelope PtdSer and/or PtdEtr can support ZIKV infection of not only human but also mosquito cells. In a mouse model for ZIKV infection, sTIM1dMLDR801 reduced ZIKV load in serum and the spleen, indicating envelope PtdSer and/or PtdEtr support in viral infection in vivo. sTIM1dMLDR801 will enable elucidation of the roles of envelope PtdSer and PtdEtr in infection of various virus species, thereby facilitating identification of their receptors and transmission mechanisms.


Assuntos
Antivirais/farmacologia , Fosfatidiletanolaminas/antagonistas & inibidores , Fosfatidilserinas/antagonistas & inibidores , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Células A549 , Animais , Linhagem Celular , Chlorocebus aethiops , Culicidae/virologia , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor de Interferon alfa e beta/genética , Células Vero , Envelope Viral/metabolismo , Carga Viral/efeitos dos fármacos , Zika virus/crescimento & desenvolvimento , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/patologia , Infecção por Zika virus/transmissão , Receptor Tirosina Quinase Axl
14.
PeerJ ; 9: e10725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552733

RESUMO

The risk for breast cancer is significantly reduced in persons who engage in greater amounts of physical activity, and greater physical activity before or after diagnosis associates with reduced disease-specific mortality. Previous mechanistic studies indicate that components of innate immunity can mediate an inhibitory effect of physical activity on several types of tumor. However, in breast cancer specifically, the myeloid compartment of innate immunity is thought to exhibit high propensity for an immunosuppressive role that obstructs anti-tumor immunity. Thus, we tested the notion that greater physical activity alters mononuclear phagocytes in mammary tissue when inhibiting nascent tumor in a murine model of breast cancer. To model greater physical activity, we placed an angled running wheel in each mouse's home cage for two weeks before tumor engraftment with EO771 mammary cancer cells that express luciferase for bioluminescent detection. Fully immunocompetent mice and mice with compromised adaptive immunity showed significantly less mammary tumor signal when given access to running wheels, although the effect size was smaller in this latter group. To investigate the role of the myeloid compartment, mononuclear phagocytes were ablated by systemic injection of clodronate liposomes at 24 h before tumor engraftment and again at the time of tumor engraftment, and this treatment reversed the inhibition in wheel running mice. However, clodronate also inhibited mammary tumor signal in sedentary mice, in conjunction with an expected decrease in gene and protein expression of the myeloid antigen, F4/80 (Adgre1), in mammary tissue. Whole transcriptome digital cytometry with CIBERSORTx was used to analyze myeloid cell populations in mammary tissue following voluntary wheel running and clodronate treatment, and this approach found significant changes in macrophage and monocyte populations. In exploratory analyses, whole transcriptome composite scores for monocytic myeloid-derived suppressor cell (M-MDSC), macrophage lactate timer, and inflammation resolution gene expression programs were significantly altered. Altogether, the results support the hypothesis that physical activity inhibits nascent mammary tumor growth by enhancing the anti-tumor potential of mononuclear phagocytes in mammary tissue.

15.
Viruses ; 13(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834920

RESUMO

Zika virus (ZIKV) is a re-emerging flavivirus that has caused large-scale epidemics. Infection during pregnancy can lead to neurologic developmental abnormalities in children. There is no approved vaccine or therapy for ZIKV. To uncover cellular pathways required for ZIKV that can be therapeutically targeted, we transcriptionally upregulated all known human coding genes with an engineered CRISPR-Cas9 activation complex in human fibroblasts deficient in interferon (IFN) signaling. We identified Ras homolog family member V (RhoV) and WW domain-containing transcription regulator 1 (WWTR1) as proviral factors, and found them to play important roles during early ZIKV infection in A549 cells. We then focused on RhoV, a Rho GTPase with atypical terminal sequences and membrane association, and validated its proviral effects on ZIKV infection and virion production in SNB-19 cells. We found that RhoV promotes infection of some flaviviruses and acts at the step of viral entry. Furthermore, RhoV proviral effects depend on the complete GTPase cycle. By depleting Rho GTPases and related proteins, we identified RhoB and Pak1 as additional proviral factors. Taken together, these results highlight the positive role of RhoV in ZIKV infection and confirm CRISPR activation as a relevant method to identify novel host-pathogen interactions.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Infecção por Zika virus/enzimologia , Zika virus/fisiologia , Proteína rhoB de Ligação ao GTP/metabolismo , Células A549 , Sistemas CRISPR-Cas , Proteínas de Ligação ao GTP/genética , Humanos , Proteínas de Neoplasias/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Internalização do Vírus , Replicação Viral , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/virologia , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteína rhoB de Ligação ao GTP/genética
16.
J Virol ; 83(24): 13026-31, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19793825

RESUMO

We recently developed a novel targeting Sindbis virus envelope pseudotyped lentiviral vector, 2.2ZZ, which acquires specific transduction capacity by antibody conjugation and binding with specific antigens on the surface of targeted cells. Here we characterize the virological properties of this vector by examining its targeting to CD4 antigen. Our results show that entry is dependent on CD4 cell surface density and occurs via the clathrin-mediated endocytic pathway. These findings provide insight into the mechanism of infection by a new viral vector with combined properties of Sindbis virus and lentiviruses and infectivity conferred by monoclonal antibody-ligand interactions.


Assuntos
Antígenos CD4/fisiologia , Clatrina/fisiologia , Endocitose , Vetores Genéticos/genética , Lentivirus/genética , Transdução Genética , Humanos
17.
Cell Rep Med ; 1(4): 100052, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32835305

RESUMO

Coronavirus disease 2019 (COVID-19) is a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is defined by respiratory symptoms, but cardiac complications including viral myocarditis are also prevalent. Although ischemic and inflammatory responses caused by COVID-19 can detrimentally affect cardiac function, the direct impact of SARS-CoV-2 infection on human cardiomyocytes is not well understood. Here, we utilize human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a model to examine the mechanisms of cardiomyocyte-specific infection by SARS-CoV-2. Microscopy and RNA sequencing demonstrate that SARS-CoV-2 can enter hiPSC-CMs via ACE2. Viral replication and cytopathic effect induce hiPSC-CM apoptosis and cessation of beating after 72 h of infection. SARS-CoV-2 infection activates innate immune response and antiviral clearance gene pathways, while inhibiting metabolic pathways and suppressing ACE2 expression. These studies show that SARS-CoV-2 can infect hiPSC-CMs in vitro, establishing a model for elucidating infection mechanisms and potentially a cardiac-specific antiviral drug screening platform.

18.
J Gene Med ; 11(3): 185-96, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19152374

RESUMO

BACKGROUND: Conventional gene-therapy applications of hematopoietic stem cells (HSCs) involve purification of CD34+ progenitor cells from the mobilized peripheral blood, ex vivo transduction of the gene of interest into them, and reinfusion of the transduced CD34+ progenitor cells into patients. Eliminating the process of purification would save labor, time and money, while enhancing HSCs viability, transplantability and pluripotency. Lentiviral vectors have been widely used in gene therapy because they infect both dividing and nondividing cells and provide sustained transgene expression. One of the exceptions to this rule is quiescent primary lymphocytes, in which reverse transcription of viral DNA is not completed. METHODS: In the present study, we tested the possibility of targeting CD34+ progenitor cells within nonpurified human mobilized peripheral blood mononuclear cells (mPBMCs) utilizing vesicular stomatitis virus G (VSV-G) pseudotyped lentiviral vectors, based on the assumption that the CD34+ progenitor cells would be preferentially transduced. To further enhance the specificity of vector transduction, we also examined utilizing a modified Sindbis virus envelope (2.2) pseudotyped lentiviral vector, developed in our laboratory, that allows targeted transduction to specific cell receptors via antibody recognition. RESULTS: Both the VSV-G and 2.2 pseudotyped vectors achieved measurable results when they were used to target CD34+ progenitor cells in nonpurified mPBMCs. CONCLUSIONS: Overall, the data obtained demonstrate the potential of ex vivo targeting of CD34+ progenitor cells without purification.


Assuntos
Antígenos CD34/metabolismo , Técnicas de Transferência de Genes , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Leucócitos Mononucleares/fisiologia , Transdução Genética , Células Cultivadas , Terapia Genética , Vetores Genéticos , Células-Tronco Hematopoéticas/citologia , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Leucócitos Mononucleares/citologia
19.
J Gene Med ; 11(7): 549-58, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19434609

RESUMO

BACKGROUND: Targeting gene therapy vectors that can home in on desired cell and tissue types in vivo comprise the ultimate gene delivery system. We have previously developed targeting lentiviral vectors by pseudotyping vectors with modified Sindbis virus envelope proteins. The envelope protein contains the Fc-binding region of protein A (ZZ domain), so the virus can be conjugated with antibodies. The conjugated antibody mediates specific transduction of the cells and tissues expressing the target antigens, both in vitro and in vivo. However, more stable conjugation of targeting molecules would be optimal for use in immunocompetent animals, as well as in humans. METHODS: We inserted integrin-targeting peptides into two sites of the targeting envelope proteins and determined whether the peptides serve as receptor-binding regions of the envelope proteins and redirect the pseudotyped viruses. RESULTS: The integrin-targeting peptides can mediate binding to cells via the interaction with integrins on target cells and transduction. Peptides with a higher binding affinity increase titers of pseudotyped virus. We found two regions on the envelope protein that can accommodate insertion and serve as receptor-binding regions. Combining the peptides in two distinct regions increased the titers of the virus. CONCLUSIONS: Successful incorporation of targeting molecules into the envelope protein will broaden the application of targeting vectors for a wide variety of experimental and clinical settings.


Assuntos
Vetores Genéticos , Integrinas/metabolismo , Lentivirus , Peptídeos , Proteínas do Envelope Viral , Animais , Linhagem Celular , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Integrinas/genética , Lentivirus/genética , Lentivirus/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sindbis virus/genética , Sindbis virus/metabolismo , Transdução Genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
20.
J Gene Med ; 11(8): 655-63, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19455593

RESUMO

BACKGROUND: Targeted gene transduction in vivo is the ultimate preferred method for gene delivery. We previously developed targeting lentiviral vectors that specifically recognize cell surface molecules with conjugated antibodies and mediate targeted gene transduction both in vitro and in vivo. Although effective in some experimental settings, the conjugation of virus with antibodies is mediated by the interaction between protein A and the Fc region of antibodies, which is not as stable as covalent conjugation. We have now developed a more stable conjugation strategy utilizing the interaction between avidin and biotin. METHODS: We inserted the biotin-adaptor-peptide, which was biotinylated by secretory biotin ligase at specific sites, into our targeting envelope proteins, enabling conjugation of the pseudotyped virus with avidin, streptavidin or neutravidin. RESULTS: When conjugated with avidin-antibody fusion proteins or the complex of avidin and biotinylated targeting molecules, the vectors could mediate specific transduction to targeted cells recognized by the targeting molecules. When conjugated with streptavidin-coated magnetic beads, transduction by the vectors was targeted to the locations of magnets. CONCLUSIONS: This targeting vector system can be used for broad applications of targeted gene transduction using biotinylated targeting molecules or targeting molecules fused with avidin.


Assuntos
Biotina/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Lentivirus/genética , Peptídeos/metabolismo , Avidina/metabolismo , Biotinilação , Western Blotting , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Humanos , Magnetismo , Mutagênese Insercional , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sindbis virus/genética , Transdução Genética , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA