Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(42): 10325-10332, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34662520

RESUMO

Layered hybrid perovskites based on Dion-Jacobson phases are of interest to various optoelectronic applications. However, the understanding of their structure-property relationships remains limited. Here, we present a systematic study of Dion-Jacobson perovskites based on (S)PbX4 (n = 1) compositions incorporating phenylene-derived aromatic spacers (S) with different anchoring alkylammonium groups and halides (X = I, Br). We focus our study on 1,4-phenylenediammonium (PDA), 1,4-phenylenedimethylammonium (PDMA), and 1,4-phenylenediethylammonium (PDEA) spacers. Systems based on PDA did not form a well-defined layered structure, showing the formation of a 1D structure instead, whereas the extension of the alkyl chains to PDMA and PDEA rendered them compatible with the formation of a layered structure, as shown by X-ray diffraction and solid-state NMR spectroscopy. In addition, the control of the spacer length affects optical properties and environmental stability, which is enhanced for longer alkyl chains and bromide compositions. This provides insights into their design for optoelectronic applications.

2.
J Chem Theory Comput ; 16(4): 2617-2626, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32119547

RESUMO

Azulene is a prototypical molecule with an anomalous fluorescence from the second excited electronic state, thus violating Kasha's rule, and with an emission spectrum that cannot be understood within the Condon approximation. To better understand the photophysics and spectroscopy of azulene and other nonconventional molecules, we developed a systematic, general, and efficient computational approach combining the semiclassical dynamics of nuclei with ab initio electronic structure. First, to analyze the nonadiabatic effects, we complement the standard population dynamics by a rigorous measure of adiabaticity, estimated with the multiple-surface dephasing representation. Second, we propose a new semiclassical method for simulating non-Condon spectra, which combines the extended thawed Gaussian approximation with the efficient single-Hessian approach. S1 ← S0 and S2 ← S0 absorption and S2 → S0 emission spectra of azulene, recorded in a new set of experiments, agree very well with our calculations. We find that accuracy of the evaluated spectra requires the treatment of anharmonicity, Herzberg-Teller, and mode-mixing effects.

3.
J Phys Chem B ; 110(15): 7835-44, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16610880

RESUMO

Broadband transient absorption (TA) spectroscopy, three-pulse photon echo peak shift (3PEPS), and anisotropy decay measurements were used to study the solvation dynamics in bulk water and interfacial water at ZrO(2) surfaces, using Eosin Y as a probe. The 3PEPS results show a multiexponential behavior with two subpicosecond components that are similar in bulk and interfacial water, while a third component of several picoseconds is significantly lengthened at the interface. The bandwidth correlation function from TA spectra exhibits the same behavior, and the TA spectra are well reproduced using the doorway-window picture with the time constants from PEPS. Our results suggest that interfacial water is restricted to a thickness of less than 5 A. Also the high-frequency collective dynamics of water does not seem to be affected by the interface. On the other hand, the increase of the third component may point to a slowing down of diffusional motion at the interface, although other effects, may play a role, which are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA