Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(18): 180502, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018787

RESUMO

We introduce sequential analysis in quantum information processing, by focusing on the fundamental task of quantum hypothesis testing. In particular, our goal is to discriminate between two arbitrary quantum states with a prescribed error threshold ε when copies of the states can be required on demand. We obtain ultimate lower bounds on the average number of copies needed to accomplish the task. We give a block-sampling strategy that allows us to achieve the lower bound for some classes of states. The bound is optimal in both the symmetric as well as the asymmetric setting in the sense that it requires the least mean number of copies out of all other procedures, including the ones that fix the number of copies ahead of time. For qubit states we derive explicit expressions for the minimum average number of copies and show that a sequential strategy based on fixed local measurements outperforms the best collective measurement on a predetermined number of copies. Whereas for general states the number of copies increases as log1/ε, for pure states sequential strategies require a finite average number of samples even in the case of perfect discrimination, i.e., ε=0.

2.
Phys Rev Lett ; 119(14): 140506, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053327

RESUMO

The detection of change points is a pivotal task in statistical analysis. In the quantum realm, it is a new primitive where one aims at identifying the point where a source that supposedly prepares a sequence of particles in identical quantum states starts preparing a mutated one. We obtain the optimal procedure to identify the change point with certainty-naturally at the price of having a certain probability of getting an inconclusive answer. We obtain the analytical form of the optimal probability of successful identification for any length of the particle sequence. We show that the conditional success probabilities of identifying each possible change point show an unexpected oscillatory behavior. We also discuss local (online) protocols and compare them with the optimal procedure.

3.
Phys Rev Lett ; 117(15): 150502, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768375

RESUMO

Sudden changes are ubiquitous in nature. Identifying them is crucial for a number of applications in biology, medicine, and social sciences. Here we take the problem of detecting sudden changes to the quantum domain. We consider a source that emits quantum particles in a default state, until a point where a mutation occurs that causes the source to switch to another state. The problem is then to find out where the change occurred. We determine the maximum probability of correctly identifying the change point, allowing for collective measurements on the whole sequence of particles emitted by the source. Then, we devise online strategies where the particles are measured individually and an answer is provided as soon as a new particle is received. We show that these online strategies substantially underperform the optimal quantum measurement, indicating that quantum sudden changes, although happening locally, are better detected globally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA