Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(32): 17081-90, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25005142

RESUMO

Gold-sulphur bonds holding self-assembled monolayers (SAMs) on their gold substrate can be broken by electrochemical reduction, which typically occurs in an electrode potential range where the electrochemical hydrogen evolution reaction (HER) is thermodynamically possible. This work uses an in situ coupling between cyclic voltammetry and spectroscopic ellipsometry to compare the interfacial structure after desorption of the aliphatic thiols 1-Dodecanethiol (DDT) and 1-Octadecanethiol (ODT), and the ω-hydroxythiol 11-Mercapto-1-undecanol (MUD). For MUD and DDT, the data can only be explained by the presence of a substance with a significantly lower refractive index than the aqueous electrolyte in the interfacial region. This substance is likely to be H2. The hypothesis is put forward here that for MUD and DDT, desorbed molecules stabilise "nanobubbles" of H2. The resulting aggregates form as initial stages of the process of complete disintegration of the SAMs, i.e. the loss of the SAM-forming molecules into solution. On the other hand, desorption and readsorption of ODT are fully reversible - the presence of a layer with low refractive index can neither be excluded nor confirmed in this case. The results indicate that different SAM-stabilities are a consequence of solubility of the thiolates.

2.
Electrochim Acta ; 902013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24235778

RESUMO

Electroreductive desorption of a highly ordered self-assembled monolayer (SAM) formed by the araliphatic thiol (4-(4-(4-pyridyl)phenyl)phenyl)methanethiol leads to a concurrent rapid hydrogen evolution reaction (HER). The desorption process and resulting interfacial structure were investigated by voltammetric techniques, in situ spectroscopic ellipsometry, and in situ vibrational sum-frequency-generation (SFG) spectroscopy. Voltammetric experiments on SAM-modified electrodes exhibit extraordinarily high peak currents, which di er between Au(111) and polycrystalline Au substrates. Association of reductive desorption with HER is shown to be the origin of the observed excess cathodic charges. The studied SAM preserves its two-dimensional order near Au surface throughout a fast voltammetric scan even when the vertex potential is set several hundred millivolt beyond the desorption potential. A model is developed for the explanation of the observed rapid HER involving ordering and pre-orientation of water present in the nanometer-sized reaction volume between desorbed SAM and the Au electrode, by the structurally extremely stable monolayer, leading to the observed catalysis of the HER.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA