Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(1): 353-359, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33337897

RESUMO

Temperature-programmed desorption (TPD) allows for the determination of the bonding strength and coverage of molecular mono- or multilayers on a surface and is widely used in surface science. In its traditional form using a mass spectrometric readout, this information is derived indirectly by analysis of resulting desorption peaks. This is problematic because the mass spectrometer signal not only originates from the sample surface but also potentially from other surfaces in the measurement chamber. As a complementary alternative, we introduce plasmonic TPD, which directly measures the surface coverage of molecular species adsorbed on metal nanoparticles at ultrahigh vacuum conditions. Using the examples of methanol and benzene on Au nanoparticle surfaces, the method can resolve all relevant features in the submonolayer and multilayer regimes. Furthermore, it enables the study of two types of nanoparticles simultaneously, which is challenging in a traditional TPD experiment, as we demonstrate specifically for Au and Ag.

2.
J Chem Phys ; 149(3): 034703, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037261

RESUMO

The delicate balance between hydrogen bonding and van der Waals interactions determines the stability, structure, and chirality of many molecular and supramolecular aggregates weakly adsorbed on solid surfaces. Yet the inherent complexity of these systems makes their experimental study at the molecular level very challenging. In this quest, small alcohols adsorbed on metal surfaces have become a useful model system to gain fundamental insight into the interplay of such molecule-surface and molecule-molecule interactions. Here, through a combination of scanning tunneling microscopy and density functional theory, we compare and contrast the adsorption and self-assembly of a range of small alcohols from methanol to butanol on Au(111). We find that longer chained alcohols prefer to form zigzag chains held together by extended hydrogen bonded networks between adjacent molecules. When alcohols bind to a metal surface datively via one of the two lone electron pairs of the oxygen atom, they become chiral. Therefore, the chain structures are formed by a hydrogen-bonded network between adjacent molecules with alternating adsorbed chirality. These chain structures accommodate longer alkyl tails through larger unit cells, while the position of the hydroxyl group within the alcohol molecule can produce denser unit cells that maximize intermolecular interactions. Interestingly, when intrinsic chirality is introduced into the molecule as in the case of 2-butanol, the assembly changes completely and square packing structures with chiral pockets are observed. This is rationalized by the fact that the intrinsic chirality of the molecule directs the chirality of the adsorbed hydroxyl group meaning that heterochiral chain structures cannot form. Overall this study provides a general framework for understanding the effect of simple alcohol molecular adstructures on hydrogen bonded aggregates and paves the way for rationalizing 2D chiral supramolecular assembly.

3.
J Am Chem Soc ; 139(18): 6403-6410, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28418246

RESUMO

Water has an incredible ability to form a rich variety of structures, with 16 bulk ice phases identified, for example, as well as numerous distinct structures for water at interfaces or under confinement. Many of these structures are built from hexagonal motifs of water molecules, and indeed, for water on metal surfaces, individual hexamers of just six water molecules have been observed. Here, we report the results of low-temperature scanning tunneling microscopy experiments and density functional theory calculations which reveal a host of new structures for water-ice nanoclusters when adsorbed on an atomically flat Cu surface. The H-bonding networks within the nanoclusters resemble the resonance structures of polycyclic aromatic hydrocarbons, and water-ice analogues of inene, naphthalene, phenalene, anthracene, phenanthrene, and triphenylene have been observed. The specific structures identified and the H-bonding patterns within them reveal new insight about water on metals that allows us to refine the so-called "2D ice rules", which have so far proved useful in understanding water-ice structures at solid surfaces.

4.
Nat Mater ; 14(9): 904-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26076306

RESUMO

High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope (125)I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual (125)I atoms into (125)Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic (125)I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies.


Assuntos
Partículas beta , Elétrons , Ouro/química , Membranas Artificiais , Isótopos de Iodo/química
5.
J Chem Phys ; 144(9): 094703, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26957172

RESUMO

The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network's enantioselective interaction with other molecules.

6.
Phys Chem Chem Phys ; 17(47): 31931-7, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26567846

RESUMO

Surface-bound molecular rotation can occur with the rotational axis either perpendicular (azimuthal) or parallel (altitudinal) to the surface. The majority of molecular rotor studies involve azimuthal rotors, whereas very few altitudinal rotors have been reported. In this work, altitudinal rotors are formed by means of coupling aryl halides through a surface-mediated Ullmann coupling reaction, producing a reaction state-dependent altitudinal molecular rotor/stator. All steps in the reaction on a Cu(111) surface are visualized by low-temperature scanning tunneling microscopy. The intermediate stage of the coupling reaction is a metal-organic complex consisting of two aryl groups attached to a single copper atom with the aryl rings angled away from the surface. This conformation leads to nearly unhindered rotational motion of ethyl groups at the para positions of the aryl rings. Rotational events of the ethyl group are both induced and quantified by electron tunneling current versus time measurements and are only observed for the intermediate structure of the Ullmann coupling reaction, not the starting material or finished product in which the ethyl groups are static. We perform an extensive set of inelastic electron tunneling driven rotation experiments that reveal that torsional motion around the ethyl group is stimulated by tunneling electrons in a one-electron process with an excitation energy threshold of 45 meV. This chemically tunable system offers an ideal platform for examining many fundamental aspects of the dynamics of chemically tunable molecular rotor and motors.

7.
J Chem Phys ; 142(10): 101915, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770504

RESUMO

Alkanethiolate monolayers are one of the most comprehensively studied self-assembled systems due to their ease of preparation, their ability to be functionalized, and the opportunity to control their thickness perpendicular to the surface. However, these systems suffer from degradation due to oxidation and defects caused by surface etching and adsorbate rotational boundaries. Thioethers offer a potential alternative to thiols that overcome some of these issues and allow dimensional control of self-assembly parallel to the surface. Thioethers have found uses in surface modification of nanoparticles, and chiral thioethers tethered to catalytically active surfaces have been shown to enable enantioselective hydrogenation. However, the effect of structural, chemical, and chiral modifications of the alkyl chains of thioethers on their self-assembly has remained largely unstudied. To elucidate how molecular structure, particularly alkyl branching and chirality, affects molecular self-assembly, we compare four related thioethers, including two pairs of structural isomers. The self-assembly of structural isomers N-butyl methyl sulfide and tert-butyl methyl sulfide was studied with high resolution scanning tunneling microscopy (STM); our results indicate that both molecules form highly ordered arrays despite the bulky tert-butyl group. We also investigated the effect of intrinsic chirality in the alkyl tails on the adsorption and self-assembly of butyl sec-butyl sulfide (BSBS) with STM and density functional theory and contrast our results to its structural isomer, dibutyl sulfide. Calculations provide the relative stability of the four stereoisomers of BSBS and STM imaging reveals two prominent monomer forms. Interestingly, the racemic mixture of BSBS is the only thioether we have examined to date that does not form highly ordered arrays; we postulate that this is due to weak enantiospecific intermolecular interactions that lead to the formation of energetically similar but structurally different assemblies. Furthermore, we studied all of the molecules in their monomeric molecular rotor form, and the surface-adsorbed chirality of the three asymmetric thioethers is distinguishable in STM images.

8.
Nat Mater ; 12(6): 523-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23603849

RESUMO

Spillover of reactants from one active site to another is important in heterogeneous catalysis and has recently been shown to enhance hydrogen storage in a variety of materials. The spillover of hydrogen is notoriously hard to detect or control. We report herein that the hydrogen spillover pathway on a Pd/Cu alloy can be controlled by reversible adsorption of a spectator molecule. Pd atoms in the Cu surface serve as hydrogen dissociation sites from which H atoms can spillover onto surrounding Cu regions. Selective adsorption of CO at these atomic Pd sites is shown to either prevent the uptake of hydrogen on, or inhibit its desorption from, the surface. In this way, the hydrogen coverage on the whole surface can be controlled by molecular adsorption at a minority site, which we term a 'molecular cork' effect. We show that the molecular cork effect is present during a surface catalysed hydrogenation reaction and illustrate how it can be used as a method for controlling uptake and release of hydrogen in a model storage system.

9.
Chem Rec ; 14(5): 834-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25048961

RESUMO

For molecules to be used as components in molecular machinery, methods are required that couple individual molecules to external energy sources in order to selectively excite motion in a given direction. While significant progress has been made in the construction of synthetic molecular motors powered by light and by chemical reactions, there are few experimental examples of electrically driven molecular motors. To this end, we pioneered the use of a new, stable and tunable molecular rotor system based on surface-bound thioethers to comprehensively study many aspects of molecular rotation. As biological molecular motors often operate at interfaces, our synthetic system is especially amenable to microscopic interrogation as compared to solution-based systems. Using scanning tunneling microscopy (STM) and density functional theory, we studied the rotation of surface-bound thioethers, which can be induced either thermally or by electrons from the STM tip in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. This work culminated in the first experimental demonstration of a single-molecule electric motor, where the electrically driven rotation of a butyl methyl sulfide molecule adsorbed on a copper surface could be directionally biased. The direction and rate of the rotation are related to the chirality of both the molecule and the STM tip (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.


Assuntos
Rotação , Sulfetos/química , Adsorção , Cobre/química , Eletricidade , Microscopia de Tunelamento , Modelos Moleculares , Propriedades de Superfície
10.
J Chem Phys ; 141(1): 014701, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25005297

RESUMO

Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relatively little is known about the structures methanol overlayers form and how these vary from one substrate to another. To address this issue, herein we analyze the hydrogen bonded networks that methanol forms as a function of coverage on three catalytically important surfaces, Au(111), Cu(111), and Pt(111), using a combination of scanning tunneling microscopy and density functional theory. We investigate the effect of intermolecular interactions, surface coverage, and adsorption energies on molecular assembly and compare the results to more widely studied water networks on the same surfaces. Two main factors are shown to direct the structure of methanol on the surfaces studied: the surface coverage and the competition between the methanol-methanol and methanol-surface interactions. Additionally, we report a new chiral form of buckled hexamer formed by surface bound methanol that maximizes the interactions between methanol monomers by sacrificing interactions with the surface. These results serve as a direct comparison of interaction strength, assembly, and chirality of methanol networks on Au(111), Cu(111), and Pt(111) which are catalytically relevant for methanol oxidation, steam reforming, and direct methanol fuel cells.

11.
Phys Rev Lett ; 106(1): 010801, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21231728

RESUMO

We report our discovery that regular scanning tunneling microscope tips can themselves be chiral. This chirality leads to differences in electron tunneling efficiencies through left- and right-handed molecules, and, when using the tip to electrically excite molecular rotation, large differences in rotation rate were observed which correlated with molecular chirality. As scanning tunneling microscopy is a widely used technique, this result may have unforeseen consequences for the measurement of asymmetric surface phenomena in a variety of important fields.

12.
ACS Nano ; 10(2): 2152-8, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26735687

RESUMO

Two-dimensional radioactive (125)I monolayers are a recent development that combines the fields of radiochemistry and nanoscience. These Au-supported monolayers show great promise for understanding the local interaction of radiation with 2D molecular layers, offer different directions for surface patterning, and enhance the emission of chemically and biologically relevant low-energy electrons. However, the elemental composition of these monolayers is in constant flux due to the nuclear transmutation of (125)I to (125)Te, and their precise composition and stability under ambient conditions has yet to be elucidated. Unlike I, which is stable and unreactive when bound to Au, the newly formed Te atoms would be expected to be more reactive. We have used electron emission and X-ray photoelectron spectroscopy (XPS) to quantify the emitted electron energies and to track the film composition in vacuum and the effect of exposure to ambient conditions. Our results reveal that the Auger electrons emitted during the ultrafast radioactive decay process have a kinetic energy corresponding to neutral Te. By combining XPS and scanning tunneling microscopy experiments with density functional theory, we are able to identify the reaction of newly formed Te to TeO2 and its subsequent dimerization. The fact that the Te2O4 units stay intact during major lateral rearrangement of the monolayer illustrates their stability. These results provide an atomic-scale picture of the composition and mobility of surface species in a radioactive monolayer as well as an understanding of the stability of the films under ambient conditions, which is a critical aspect in their future applications.

13.
J Phys Chem Lett ; 5(19): 3380-5, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26278448

RESUMO

Co-Cu nanoparticles have recently been explored for Fischer-Tropsch synthesis (FTS) as a way to combine the long chain selectivity of Co with Cu's activity for alcohol formation in order to synthesize oxygenated transportation fuels. Depending on particle size, hydrogen dissociation can be a rate-determining step in cobalt-catalyzed FTS. To understand the fundamentals of uptake and release of hydrogen from the Co/Cu bimetallic system, we prepared well-defined Co nanoparticles on Cu(111). We demonstrate that hydrogen spills over from dissociation sites on the Co nanoparticles to the Cu(111) surface via the Co-Cu interface and that desorption of H occurs at a temperature that is lower than from Co or Cu alone, which we attribute to the Co-Cu interface sites. From this data, we have constructed an energy landscape for the facile dissociation, spillover, and desorption of hydrogen on the Co-Cu bimetallic system.

14.
Chem Commun (Camb) ; 50(8): 1006-8, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24309495

RESUMO

The Ullmann reaction of bromobenzene, the simplest coupling reagent, to form biphenyl on a Cu surface proceeds via a highly mobile organometallic intermediate in which two phenyl groups extract and bind a single surface Cu atom.

15.
ACS Nano ; 7(5): 4384-92, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23565854

RESUMO

Competitive adsorption and lateral pressure between surface-bound intermediates are important effects that dictate chemical reactivity. Lateral, or two-dimensional, pressure is known to promote reactivity by lowering energetic barriers and increasing conversion to products. We examined the coadsorption of CO and H2, the two reactants in the industrially important Fischer-Tropsch synthesis, on Co nanoparticles to investigate the effect of two-dimensional pressure. Using scanning tunneling microscopy, we directly visualized the coadsorption of H and CO on Co, and we found that the two adsorbates remain in segregated phases. CO adsorbs on the Co nanoparticles via spillover from the Cu(111) support, and when deposited onto preadsorbed adlayers of H, CO exerts two-dimensional pressure on H, compressing it into a higher-density, energetically less-preferred structure. By depositing excess CO, we found that H on the Co surface is forced to spill over onto the Cu(111) support. Thus, spillover of H from Co onto Cu, where it would not normally reside due to the high activation barrier, is preferred over desorption. We corroborated the mechanism of this spillover-induced displacement by calculating the relevant energetics using density functional theory, which show that the displacement of H from Co is compensated for by the formation of strong CO-Co bonds. These results may have significant ramifications for Fischer-Tropsch synthesis kinetics on Co, as the segregation of CO and H, as well as the displacement of H by CO, limits the interface between the two molecules.

16.
ACS Nano ; 7(7): 6181-7, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23746268

RESUMO

Methanol steam reforming is a promising reaction for on-demand hydrogen production. Copper catalysts have excellent activity and selectivity for methanol conversion to hydrogen and carbon dioxide. This product balance is dictated by the formation and weak binding of formaldehyde, the key reaction intermediate. It is widely accepted that oxygen adatoms or oxidized copper are required to activate methanol. However, we show herein by studying a well-defined metallic copper surface that water alone is capable of catalyzing the conversion of methanol to formaldehyde. Our results indicate that six or more water molecules act in concert to deprotonate methanol to methoxy. Isolated palladium atoms in the copper surface further promote this reaction. This work reveals an unexpected role of water, which is typically considered a bystander in this key chemical transformation.


Assuntos
Cobre/química , Formaldeído/química , Hidrogênio/química , Hidrogênio/isolamento & purificação , Metanol/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Água/química , Catálise , Teste de Materiais , Tamanho da Partícula
17.
ACS Nano ; 6(11): 10115-21, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23030641

RESUMO

Atomic and molecular self-assembly are key phenomena that underpin many important technologies. Typically, thermally enabled diffusion allows a system to sample many areas of configurational space, and ordered assemblies evolve that optimize interactions between species. Herein we describe a system in which the diffusion is quantum tunneling in nature and report the self-assembly of H atoms on a Cu(111) surface into complex arrays based on local clustering followed by larger scale islanding of these clusters. By scanning tunneling microscope tip-induced scrambling of H atom assemblies, we are able to watch the atomic scale details of H atom self-assembly in real time. The ordered arrangements we observe are complex and very different from those formed by H on other metals that occur in much simpler geometries. We contrast the diffusion and assembly of H with D, which has a much slower tunneling rate and is not able to form the large islands observed with H over equivalent time scales. Using density functional theory, we examine the interaction of H atoms on Cu(111) by calculating the differential binding energy as a function of H coverage. At the temperature of the experiments (5 K), H(D) diffusion by quantum tunneling dominates. The quantum-tunneling-enabled H and D diffusion is studied using a semiclassically corrected transition state theory coupled with density functional theory. This system constitutes the first example of quantum-tunneling-enabled self-assembly, while simultaneously demonstrating the complex ordering of H on Cu(111), a catalytically relevant surface.


Assuntos
Cobre/química , Cristalização/métodos , Hidrogênio/química , Modelos Químicos , Simulação por Computador , Teste de Materiais , Teoria Quântica , Semicondutores
18.
Nat Nanotechnol ; 6(10): 625-9, 2011 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-21892165

RESUMO

For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.


Assuntos
Eletricidade , Movimento (Física) , Nanoestruturas , Cobre/química , Sulfetos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA