Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochem J ; 479(16): 1709-1725, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35969127

RESUMO

The protein kinases PAK4, PAK5 and PAK6 comprise a family of ohnologues. In multiple cancers including melanomas PAK5 most frequently carries non-synonymous mutations; PAK6 and PAK4 have fewer; and PAK4 is often amplified. To help interpret these genomic data, initially we compared the cellular regulation of the sister kinases and their roles in melanoma cells. In common with many ohnologue protein kinases, PAK4, PAK5 and PAK6 each have two 14-3-3-binding phosphosites of which phosphoSer99 is conserved. PAK4 localises to the leading edge of cells in response to phorbol ester-stimulated binding of 14-3-3 to phosphoSer99 and phosphoSer181, which are phosphorylated by two different PKCs or PKDs. These phosphorylations of PAK4 are essential for its phorbol ester-stimulated phosphorylation of downstream substrates. In contrast, 14-3-3 interacts with PAK5 in response to phorbol ester-stimulated phosphorylation of Ser99 and epidermal growth factor-stimulated phosphorylation of Ser288; whereas PAK6 docks onto 14-3-3 and is prevented from localising to cell-cell junctions when Ser133 is phosphorylated in response to cAMP-elevating agents via PKA and insulin-like growth factor 1 via PKB/Akt. Silencing of PAK4 impairs viability, migration and invasive behaviour of melanoma cells carrying BRAFV600E or NRASQ61K mutations. These defects are rescued by ectopic expression of PAK4, more so by a 14-3-3-binding deficient PAK4, and barely by PAK5 or PAK6. Together these genomic, biochemical and cellular data suggest that the oncogenic properties of PAK4 are regulated by PKC-PKD signalling in melanoma, while PAK5 and PAK6 are dispensable in this cancer.


Assuntos
Melanoma , Proteínas Quinases , Humanos , Melanoma/genética , Ésteres de Forbol , Fosforilação , Proteínas Quinases/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
2.
Glycobiology ; 31(1): 44-54, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-32501471

RESUMO

Siglec-15 is a conserved sialic acid-binding Ig-like lectin expressed on osteoclast progenitors, which plays an important role in osteoclast development and function. It is also expressed by tumor-associated macrophages and by some tumors, where it is thought to contribute to the immunosuppressive microenvironment. It was shown previously that engagement of macrophage-expressed Siglec-15 with tumor cells expressing its ligand, sialyl Tn (sTn), triggered production of TGF-ß. In the present study, we have further investigated the interaction between Siglec-15 and sTn on tumor cells and its functional consequences. Based on binding assays with lung and breast cancer cell lines and glycan-modified cells, we failed to see evidence for recognition of sTn by Siglec-15. However, using a microarray of diverse, structurally defined glycans, we show that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences. In addition, we were unable to demonstrate enhanced TGF-ß secretion following co-culture of Siglec-15-expressing monocytic cell lines with tumor cells expressing sTn or following Siglec-15 cross-linking with monoclonal antibodies. However, we did observe activation of the SYK/MAPK signaling pathway following antibody cross-linking of Siglec-15 that may modulate the functional activity of macrophages.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/genética , Técnicas de Cocultura , Humanos , Imunoglobulinas/química , Imunoglobulinas/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Polissacarídeos/química , Ácidos Siálicos/química , Células Tumorais Cultivadas
3.
Bioinformatics ; 31(14): 2276-83, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25735772

RESUMO

MOTIVATION: The 14-3-3 family of phosphoprotein-binding proteins regulates many cellular processes by docking onto pairs of phosphorylated Ser and Thr residues in a constellation of intracellular targets. Therefore, there is a pressing need to develop new prediction methods that use an updated set of 14-3-3-binding motifs for the identification of new 14-3-3 targets and to prioritize the downstream analysis of >2000 potential interactors identified in high-throughput experiments. RESULTS: Here, a comprehensive set of 14-3-3-binding targets from the literature was used to develop 14-3-3-binding phosphosite predictors. Position-specific scoring matrix, support vector machines (SVM) and artificial neural network (ANN) classification methods were trained to discriminate experimentally determined 14-3-3-binding motifs from non-binding phosphopeptides. ANN, position-specific scoring matrix and SVM methods showed best performance for a motif window spanning from -6 to +4 around the binding phosphosite, achieving Matthews correlation coefficient of up to 0.60. Blind prediction showed that all three methods outperform two popular 14-3-3-binding site predictors, Scansite and ELM. The new methods were used for prediction of 14-3-3-binding phosphosites in the human proteome. Experimental analysis of high-scoring predictions in the FAM122A and FAM122B proteins confirms the predictions and suggests the new 14-3-3-predictors will be generally useful. AVAILABILITY AND IMPLEMENTATION: A standalone prediction web server is available at http://www.compbio.dundee.ac.uk/1433pred. Human candidate 14-3-3-binding phosphosites were integrated in ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome database.


Assuntos
Proteínas 14-3-3/metabolismo , Fosfopeptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteômica/métodos , Motivos de Aminoácidos , Sítios de Ligação , Células HEK293 , Humanos , Redes Neurais de Computação , Fosfopeptídeos/química , Fosfoproteínas/química , Matrizes de Pontuação de Posição Específica , Proteoma/metabolismo , Software , Máquina de Vetores de Suporte
4.
Biomedicines ; 10(2)2022 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-35203449

RESUMO

Macrophages (MΦ) are highly heterogenous and versatile innate immune cells involved in homeostatic and immune responses. Activated MΦ can exist in two extreme phenotypes: pro-inflammatory (M1) MΦ and anti-inflammatory (M2) MΦ. These phenotypes can be recapitulated in vitro by using ligands of toll-like receptors (TLRs) and cytokines such as IFNγ and IL-4. In recent years, human induced pluripotent stem cells (iPSC)-derived MΦ have gained major attention, as they are functionally similar to human monocyte-derived MΦ and are receptive to genome editing. In this study, we polarised iPSC-derived MΦ to M1 or M2 and analysed their proteome and secretome profiles using quantitative proteomics. These comprehensive proteomic data sets provide new insights into functions of polarised MΦ.

5.
J Immunol Res ; 2022: 9926305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252461

RESUMO

C-Type lectin receptor 5A (CLEC5A) is a spleen tyrosine kinase- (Syk-) coupled pattern recognition receptor expressed on myeloid cells and involved in the innate immune response to viral and bacterial infections. Activation of the CLEC5A receptor with pathogen-derived antigens leads to a secretion of proinflammatory mediators such as TNF-α and IL-6 that may provoke a systemic cytokine storm, and CLEC5A gene polymorphisms are associated with the severity of DV infection. In addition, the CLEC5A receptor was mentioned in the context of noninfectious disorders like chronic obstructive pulmonary disease (COPD) or arthritis. Altogether, CLEC5A may be considered as an innate immune checkpoint capable to amplify proinflammatory signals, and this way contributes to infection or to aseptic inflammation. In this study, we determined CLEC5A receptor expression on different macrophage subsets (in vitro and ex vivo) and the functional consequences of its activation in aseptic conditions. The CLEC5A surface expression appeared the highest on proinflammatory M1 macrophages while intermediate on tumor-associated phenotypes (M2c or TAM). In contrast, the CLEC5A expression on ex vivo-derived alveolar macrophages from healthy donors or macrophages from ovarian cancer patients was hardly detectable. Targeting CLEC5A on noninflammatory macrophages with an agonistic α-CLEC5A antibody triggered a release of proinflammatory cytokines, resembling a response to dengue virus, and led to phenotypic changes in myeloid cells that may suggest their reprogramming towards a proinflammatory phenotype, e.g., upregulation of CD80 and downregulation of CD163. Interestingly, the CLEC5A agonist upregulated immune-regulatory molecules like CD206, PD-L1, and cytokines like IL-10, macrophage-derived chemokine (MDC/CCL22), and thymus and activation chemokine (TARC/CCL17) which are associated with an anti-inflammatory or a protumorigenic macrophage phenotype. In the absence of concomitant pathogenic or endogenous danger signals, the CLEC5A receptor activation did not amplify an autologous T cell response, which may represent a protective innate mechanism to avoid an undesirable autoimmune adaptive response.


Assuntos
Lectinas Tipo C , Linfócitos T , Citocinas/metabolismo , Humanos , Imunidade Inata , Lectinas Tipo C/metabolismo , Macrófagos , Receptores de Superfície Celular , Linfócitos T/metabolismo
6.
Curr Opin Chem Biol ; 62: 34-42, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33607404

RESUMO

Siglecs (sialic acid-binding immunoglobulin-like lectins) are a family of receptors that bind sialic acids in specific linkages on glycoproteins and glycolipids. Siglecs play roles in immune signalling and exhibit cell-type specific expression and endocytic properties. Recent studies suggest that Siglecs are likely to function as immune checkpoints that regulate responses in cancers and inflammatory diseases. In this review, we discuss strategies to target the Siglec-sialic acid axis in human diseases, particularly cancer, and the possibility of exploiting them for therapeutic intervention.


Assuntos
Antineoplásicos/química , Biomarcadores Tumorais/metabolismo , Imunoterapia/métodos , Neoplasias/terapia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/imunologia , Glicolipídeos/química , Glicoproteínas/química , Humanos , Inflamação/metabolismo , Inflamação/terapia , Terapia de Alvo Molecular , Ácido N-Acetilneuramínico/metabolismo , Neoplasias/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/antagonistas & inibidores
7.
Wellcome Open Res ; 6: 134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35224210

RESUMO

Background: Siglec-1 is a macrophage lectin-like receptor that mediates sialic acid-dependent cellular interactions. Its upregulation on macrophages in autoimmune disease was shown previously to promote inflammation through suppressing the expansion of regulatory T cells (Tregs). Here we investigate the molecular basis for Siglec-1 binding to Tregs using in vitro-induced cells as a model system. Methods: Glycosylation changes that affect Siglec­1 binding were studied by comparing activated and resting Tregs using RNA-Seq, glycomics, proteomics and binding of selected antibodies and lectins. A proximity labelling and proteomics strategy was used to identify Siglec-1 counter-receptors expressed on activated Tregs. Results: Siglec-1 binding was strongly upregulated on activated Tregs, but lost under resting conditions. Glycomics revealed changes in N-glycans and glycolipids following Treg activation and we observed changes in expression of multiple 'glycogenes' that could lead to the observed increase in Siglec-1 binding. Proximity labelling of intact, living cells identified 49 glycoproteins expressed by activated Tregs that may function as Siglec-1 counter-receptors. These represent ~5% of the total membrane protein pool and were mainly related to T cell activation and proliferation. We demonstrate that several of these counter-receptors were upregulated following activation of Tregs and provide initial evidence that their altered glycosylation may also be important for Siglec-1 binding. Conclusions: We provide the first comprehensive analysis of glycan changes that occur in activated Tregs, leading to recognition by the macrophage lectin, Siglec-1 and suppression of Treg expansion. We furthermore provide insights into glycoprotein counter-receptors for Siglec-1 expressed by activated Tregs that are likely to be important for suppressing Treg expansion.

8.
Database (Oxford) ; 2014: bat085, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24501395

RESUMO

The dimeric 14-3-3 proteins dock onto pairs of phosphorylated Ser and Thr residues on hundreds of proteins, and thereby regulate many events in mammalian cells. To facilitate global analyses of these interactions, we developed a web resource named ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome, which integrates multiple data sets on 14-3-3-binding phosphoproteins. ANIA also pinpoints candidate 14-3-3-binding phosphosites using predictor algorithms, assisted by our recent discovery that the human 14-3-3-interactome is highly enriched in 2R-ohnologues. 2R-ohnologues are proteins in families of two to four, generated by two rounds of whole genome duplication at the origin of the vertebrate animals. ANIA identifies candidate 'lynchpins', which are 14-3-3-binding phosphosites that are conserved across members of a given 2R-ohnologue protein family. Other features of ANIA include a link to the catalogue of somatic mutations in cancer database to find cancer polymorphisms that map to 14-3-3-binding phosphosites, which would be expected to interfere with 14-3-3 interactions. We used ANIA to map known and candidate 14-3-3-binding enzymes within the 2R-ohnologue complement of the human kinome. Our projections indicate that 14-3-3s dock onto many more human kinases than has been realized. Guided by ANIA, PAK4, 6 and 7 (p21-activated kinases 4, 6 and 7) were experimentally validated as a 2R-ohnologue family of 14-3-3-binding phosphoproteins. PAK4 binding to 14-3-3 is stimulated by phorbol ester, and involves the 'lynchpin' site phosphoSer99 and a major contribution from Ser181. In contrast, PAK6 and PAK7 display strong phorbol ester-independent binding to 14-3-3, with Ser113 critical for the interaction with PAK6. These data point to differential 14-3-3 regulation of PAKs in control of cell morphology. Database URL: https://ania-1433.lifesci.dundee.ac.uk/prediction/webserver/index.py.


Assuntos
Proteínas 14-3-3/metabolismo , Bases de Dados de Proteínas , Anotação de Sequência Molecular/métodos , Mapas de Interação de Proteínas , Software , Sequência de Aminoácidos , Cromatografia de Afinidade , Células HEK293 , Humanos , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Filogenia , Ligação Proteica , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Padrões de Referência , Ferramenta de Busca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA