Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Langmuir ; 39(23): 8196-8204, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37267478

RESUMO

Seamless integration between biological systems and electrical components is essential for enabling a twinned biochemical-electrical recording and therapy approach to understand and combat neurological disorders. Employing bioelectronic systems made up of conjugated polymers, which have an innate ability to transport both electronic and ionic charges, provides the possibility of such integration. In particular, translating enzymatically polymerized conductive wires, recently demonstrated in plants and simple organism systems, into mammalian models, is of particular interest for the development of next-generation devices that can monitor and modulate neural signals. As a first step toward achieving this goal, enzyme-mediated polymerization of two thiophene-based monomers is demonstrated on a synthetic lipid bilayer supported on a Au surface. Microgravimetric studies of conducting films polymerized in situ provide insights into their interactions with a lipid bilayer model that mimics the cell membrane. Moreover, the resulting electrical and viscoelastic properties of these self-organizing conducting polymers suggest their potential as materials to form the basis for novel approaches to in vivo neural therapeutics.


Assuntos
Bicamadas Lipídicas , Polímeros , Animais , Polimerização , Membrana Celular , Membranas , Mamíferos
2.
Soft Matter ; 13(25): 4412-4417, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28590474

RESUMO

Herein we utilize insulin to prepare amyloid based chiral helices with either right or left handed helicity. We demonstrate that the helices can be utilized as structural templates for the conducting polymer alkoxysulfonate poly(ethylenedioxythiophene) (PEDOT-S). The chirality of the helical assembly is transferred to PEDOT-S as demonstrated by polarized optical microscopy (POM) and Circular Dichroism (CD). Analysis of the helices by conductive atomic force microscopy (c-AFM) shows significant conductivity. In addition, the morphology of the template structure is stabilized by PEDOT-S. These conductive helical structures represent promising candidates in our quest for THz resonators.


Assuntos
Condutividade Elétrica , Insulina/química , Multimerização Proteica , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Estereoisomerismo , Água/química
3.
Mater Horiz ; 11(8): 2021-2031, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38372393

RESUMO

Electrochemical doping of organic mixed ionic-electronic conductors is key for modulating their conductivity, charge storage and volume enabling high performing bioelectronic devices such as recording and stimulating electrodes, transistors-based sensors and actuators. However, electrochemical doping has not been explored to the same extent for modulating the mechanical properties of OMIECs on demand. Here, we report a qualitative and quantitative study on how the mechanical properties of a glycolated polythiophene, p(g3T2), change in situ during electrochemical doping and de-doping. The Young's modulus of p(g3T2) changes from 69 MPa in the dry state to less than 10 MPa in the hydrated state and then further decreases down to 0.4 MPa when electrochemically doped. With electrochemical doping-dedoping the Young's modulus of p(g3T2) changes by more than one order of magnitude reversibly, representing the largest modulation reported for an OMIEC. Furthermore, we show that the electrolyte concentration affects the magnitude of the change, demonstrating that in less concentrated electrolytes more water is driven into the film due to osmosis and therefore the film becomes softer. Finally, we find that the oligo ethylene glycol side chain functionality, specifically the length and asymmetry, affects the extent of modulation. Our findings show that glycolated polythiophenes are promising materials for mechanical actuators with a tunable modulus similar to the range of biological tissues, thus opening a pathway for new mechanostimulation devices.

4.
J Phys Chem B ; 128(27): 6581-6588, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38942741

RESUMO

The ability of small lipophilic molecules to penetrate the blood-brain barrier through transmembrane diffusion has enabled researchers to explore new diagnostics and therapies for brain disorders. Until now, therapies targeting the brain have mainly relied on biochemical mechanisms, while electrical treatments such as deep brain stimulation often require invasive procedures. An alternative to implanting deep brain stimulation probes could involve administering small molecule precursors intravenously, capable of crossing the blood-brain barrier, and initiating the formation of conductive polymer networks in the brain through in vivo polymerization. This study examines the aggregation behavior of five water-soluble conducting polymer precursors sharing the same conjugate core but differing in side chains, using spectroscopy and various computational chemistry tools. Our findings highlight the significant impact of side chain composition on both aggregation and spectroscopic response.


Assuntos
Tiofenos , Tiofenos/química , Polímeros/química , Estrutura Molecular , Compostos Bicíclicos Heterocíclicos com Pontes/química
5.
Small ; 9(13): 2316-24, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23401298

RESUMO

Herein a library of hybrid Mn-Anderson polyoxometalates anions are presented: 1, [(MnMo6 O18 )((OCH2 )3 -C-(CH2 )7 CHCH2 )2 ](3-) ; compound 2, [(MnMo6 O18 )((OCH2 )3 C-NHCH2 C16 H9 )2 ](3-) ; compound 3, [(MnMo6 O18 )((OCH2 )3 C-(CH2 )7 CHCH2 )1 ((OCH2 )3 C-NHCH2 C16 H9 )1 ](3-) ; compound 4, [(MnMo6 O18 )((OCH2 )3 C-NHC(O)CH2 CHCH2 )2 ](3-) and compounds 5-9, [(MnMo6 O18 )((OCH2 )3 C-NHC(O)(CH2 )x CH3 )2 ]), where x = 4, 10, 12, 14, and 18 respectively. The compounds resulting from the cation exchange of the anions 1-9 to give TBA (a) and DMDOA (b) salts, and additionally for compounds 1, 2 and 3, tetraphenylphosphonium (PPh4 ) (c) salts, are explored at the air/water interface using scanning force microscopy, showing a range of architectures including hexagonal structures, nanofibers and other supramolecular forms. Additionally the solid-state structures for compounds 1c, 2c, 4a, 6a, 9a, are presented for the first time and these investigations demonstrate the delicate interplay between the structure of the covalently derivatised hybrid organo-clusters as well as the ion-exchange cation types.

6.
Cell Stem Cell ; 30(2): 219-238.e14, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36638801

RESUMO

Human induced pluripotent stem cell (hiPSC) technologies offer a unique resource for modeling neurological diseases. However, iPSC models are fraught with technical limitations including abnormal aggregation and inefficient maturation of differentiated neurons. These problems are in part due to the absence of synergistic cues of the native extracellular matrix (ECM). We report on the use of three artificial ECMs based on peptide amphiphile (PA) supramolecular nanofibers. All nanofibers display the laminin-derived IKVAV signal on their surface but differ in the nature of their non-bioactive domains. We find that nanofibers with greater intensity of internal supramolecular motion have enhanced bioactivity toward hiPSC-derived motor and cortical neurons. Proteomic, biochemical, and functional assays reveal that highly mobile PA scaffolds caused enhanced ß1-integrin pathway activation, reduced aggregation, increased arborization, and matured electrophysiological activity of neurons. Our work highlights the importance of designing biomimetic ECMs to study the development, function, and dysfunction of human neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nanofibras , Humanos , Proteômica , Neurônios/metabolismo , Matriz Extracelular/metabolismo , Nanofibras/química
7.
J Am Chem Soc ; 134(4): 2429-33, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22225499

RESUMO

We report on the fabrication of solution-processed organic phototransistors (OPTs) based on perylenebis(dicarboximide)s (PDIs). We found that the responsivity to the photoillumination depends on the transistor's channel length and that it can be tuned by varying the device geometry. The analysis of different morphologies of the active semiconducting layer revealed that single PDI fibers exhibit the higher photoresponse when compared to more poorly organized films. The highest responsivity value of 4.08 ± 1.65 × 10(5) A/W was achieved on a multifiber-based OPT. These findings represent a step forward toward the use of organic based phototransistors as photosensors.


Assuntos
Perileno/química , Transistores Eletrônicos , Luz , Estrutura Molecular , Perileno/análogos & derivados , Processos Fototróficos
8.
J Nanosci Nanotechnol ; 12(11): 8755-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23421280

RESUMO

Graphene is a two dimensional building block for carbon allotropes of many other dimensionality and shows remarkable electronic and optical properties that attract enormous interest. In order to make graphene useful for real technology, a control of its electronic and mechanical properties is a must. In this respect, a crucial step for the use of graphene layers in device fabrication is the deposition onto suitable substrates, understanding the interaction with them. Micromechanical cleavage of graphite has been used to produce high-quality graphene sheets. The aim of this work is to study the strain effects induced in graphene by the deposition process using Raman spectroscopy and scanning force microscopy. The study reveals that this deposition method randomly produces strained and unstrained graphene sheets, which can be distinguished through an appropriate analysis of the Raman spectra using polarized incident light. We have also observed that the induced strain can be partially restored under thermal treatments.


Assuntos
Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Módulo de Elasticidade , Dureza , Teste de Materiais , Tamanho da Partícula , Análise Espectral Raman , Estresse Mecânico
9.
J Mater Chem C Mater ; 9(41): 14596-14605, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34765224

RESUMO

Conducting polymers are the natural choice for soft electronics. However, the main challenge is to pattern conducting polymers using a simple and rapid method to manufacture advanced devices. Filtration of conducting particle dispersions using a patterned membrane is a promising method. Here, we show the rapid prototyping of various micropatterned organic electronic heterostructures of PEDOT:PSS by inducing the formation of microscopic hydrogels, which are then filtered through membranes containing printed hydrophobic wax micropatterns. The hydrogels are retained on the un-patterned, hydrophilic regions, forming micropatterns, achieving a resolution reaching 100 µm. We further solve the problem of forming stacked devices by transferring the acidified PEDOT:PSS micropattern using the adhesive tape transfer method to form vertical heterostructures with other micropatterned electronic colloids such as CNTs, which are patterned using a similar technique. We demonstrate a number of different heterostructure devices including micro supercapacitors and organic electrochemical transistors and also demonstrate the use of acidified PEDOT:PSS microstructures in cell cultures to enable bioelectronics.

10.
Nat Commun ; 12(1): 2354, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883549

RESUMO

Conducting polymers, such as the p-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable, n-doped conducting polymers are also needed. Despite major efforts, no n-type equivalents to the benchmark PEDOT:PSS exist to date. Here, we report on the development of poly(benzimidazobenzophenanthroline):poly(ethyleneimine) (BBL:PEI) as an ethanol-based n-type conductive ink. BBL:PEI thin films yield an n-type electrical conductivity reaching 8 S cm-1, along with excellent thermal, ambient, and solvent stability. This printable n-type mixed ion-electron conductor has several technological implications for realizing high-performance organic electronic devices, as demonstrated for organic thermoelectric generators with record high power output and n-type organic electrochemical transistors with a unique depletion mode of operation. BBL:PEI inks hold promise for the development of next-generation bioelectronics and wearable devices, in particular targeting novel functionality, efficiency, and power performance.

11.
J Am Chem Soc ; 132(44): 15490-2, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20942487

RESUMO

Three organic-inorganic hybrid Mn-Anderson polyoxometalates (POMs), with both symmetrical and asymmetrical appended groups, have been synthesized, identified using electrospray mass spectrometry, and isolated using an approach that allows the three AA, BB, and AB compounds to be structurally characterized. Investigation of the self-assembly of the hybrids on hydrophilic surfaces reveals the formation of nanofibres with characteristics that reflect the nature of the substitution of the POM yielding a route to the programmed assembly of anisotropic hybrid nanostructures.


Assuntos
Nanoestruturas/química , Compostos de Tungstênio/química , Anisotropia , Compostos Inorgânicos/química , Espectrometria de Massas , Modelos Moleculares , Compostos Orgânicos/química
12.
Sci Adv ; 6(39)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32967836

RESUMO

Halide perovskites have exceptional optoelectronic properties, but a poor understanding of the relationship between crystal dimensions, composition, and properties limits their use in integrated devices. We report a new multiplexed cantilever-free scanning probe method for synthesizing compositionally diverse and size-controlled halide perovskite nanocrystals spanning square centimeter areas. Single-particle photoluminescence studies reveal multiple independent emission modes due to defect-defined band edges with relative intensities that depend on crystal size at a fixed composition. Smaller particles, but ones with dimensions that exceed the quantum confinement regime, exhibit blue-shifted emission due to reabsorption of higher-energy modes. Six different halide perovskites have been synthesized, including a layered Ruddlesden-Popper phase, and the method has been used to prepare functional solar cells based on single nanocrystals. The ability to pattern arrays of multicolor light-emitting nanocrystals opens avenues toward the development of optoelectronic devices, including optical displays.

13.
Polymers (Basel) ; 11(10)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614825

RESUMO

The morphology of the active layer plays a crucial role in determining device performance and stability for organic solar cells. All-polymer solar cells (All-PSCs), showing robust and stable morphologies, have been proven to give better thermal stability than their fullerene counterparts. However, outstanding thermal stability is not always the case for polymer blends, and the limiting factors responsible for the poor thermal stability in some All-PSCs, and how to obtain higher efficiency without losing stability, still remain unclear. By studying the morphology of poly [2,3-bis (3-octyloxyphenyl) quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl](TQ1)/poly[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b']dithiophene-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl]] (PCE10)/PNDI-T10 blend systems, we found that the rearranged molecular packing structure and phase separation were mainly responsible for the poor thermal stability in devices containing PCE10. The TQ1/PNDI-T10 devices exhibited an improved PCE with a decreased π-π stacking distance after thermal annealing; PCE10/PNDI-T10 devices showed a better pristine PCE, however, thermal annealing induced the increased π-π stacking distance and thus inferior hole conductivity, leading to a decreased PCE. Thus, a maximum PCE could be achieved in a TQ1/PCE10/PNDI-T10 (1/1/1) ternary system after thermal annealing resulting from their favorable molecular interaction and the trade-off of molecular packing structure variations between TQ1 and PCE10. This indicates that a route to efficient and thermal stable All-PSCs can be achieved in a ternary blend by using material with excellent pristine efficiency, combined with another material showing improved efficiency under thermal annealing.

14.
ACS Omega ; 2(4): 1672-1678, 2017 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-28474013

RESUMO

Small π-conjugated molecules can be designed and synthesized to undergo controlled self-assembly forming low-dimensional architectures, with programmed order at the supramolecular level. Such order is of paramount importance because it defines the property of the obtained material. Here, we have focused our attention to four pyromellitic diimide derivatives exposing different types of side chains. The joint effect of different noncovalent interactions including π-π stacking, H-bonding, and van der Waals forces on the four derivatives yielded different self-assembled architectures. Atomic force microscopy studies, corroborated with infrared and nuclear magnetic resonance spectroscopic measurements, provided complementary multiscale insight into these assemblies.

16.
Nanoscale ; 8(4): 2386-94, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26754960

RESUMO

The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(II) or Pd(II) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(II) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(II) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results provide important guidelines for the design of conductive metal coordination polymers, highlighting the fundamental role of both intra- as well as inter-chain interactions, thus opening up new perspectives towards their application in functional devices.

18.
ACS Appl Mater Interfaces ; 7(35): 19764-73, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26290062

RESUMO

Treating PEDOT: PSS (Clevios) with certain additives, such as ethylene glycol (EG), dimethyl sulfoxide (DMSO) and sorbitol, has been shown to increase the conductivity of this material from roughly 1 to nearly 1000 S/cm. Using a slow drying method, we show that the additive induced a separation between free PSS and reorganized PEDOT: PSS complexes in the highly conductive PEDOT: PSS films. Additives (DMSO, DEG, and PEG 400) were included in PEDOT: PSS aqueous dispersions at large volume fractions. The mixtures were slowly dried under room conditions. During drying, the evaporation of water resulted in an additive-rich solvent mixture from which the reorganized PEDOT: PSS complexes aggregated into a dense film while free PSS remained in the solution. Upon complete drying, PSS formed a transparent rim film around the conducting PEDOT film. The chemical compositions of the two phases were studied using an infrared microscope. This removal of PSS resulted in more compact packing of PEDOT molecules, as confirmed by X-ray diffraction measurements. X-ray photoelectron spectroscopy and atomic force microscope measurements suggested the enrichment of PEDOT on the film surface after PSS separation. Through a simple drying process in an additive-containing dispersion, the conductivity of PEDOT films increased from 0.1 to 200-400 S/cm. Through this method, we confirmed the existence of two phases in additive-treated and highly conductive PEDOT: PSS films. The proper separation between PSS and PEDOT will be of relevance in designing strategies to process high-performance plastic electrodes.

19.
Sci Rep ; 5: 11242, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26059023

RESUMO

Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium:lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes.


Assuntos
Elétrons , Lipídeos/química , Membranas Artificiais , Polímeros/química , Bicamadas Lipídicas , Microscopia de Força Atômica
20.
Adv Mater ; 26(11): 1688-93, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24343948

RESUMO

Nanoscopic metal-molecule-metal junctions consisting of Fe-bis(terpyridine)-based ordered nanostructures are grown in layer-by-layer fashion on a solid support. Hopping is demonstrated as the main charge-transport mechanism both experimentally and theoretically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA