Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(5): e3002127, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200394

RESUMO

Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined ß-1,3/ß-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.


Assuntos
Lotus , Micorrizas , Rhizobium , Micorrizas/genética , Lotus/genética , Lotus/metabolismo , Lotus/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Rhizobium/metabolismo , Raízes de Plantas/metabolismo , Mutação , Simbiose/genética , Fosfotransferases/metabolismo , Polissacarídeos/metabolismo , Glucanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Proc Natl Acad Sci U S A ; 119(51): e2214703119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508666

RESUMO

Plants have evolved the ability to distinguish between symbiotic and pathogenic microbial signals. However, potentially cooperative plant-microbe interactions often abort due to incompatible signaling. The Nodulation Specificity 1 (NS1) locus in the legume Medicago truncatula blocks tissue invasion and root nodule induction by many strains of the nitrogen-fixing symbiont Sinorhizobium meliloti. Controlling this strain-specific nodulation blockade are two genes at the NS1 locus, designated NS1a and NS1b, which encode malectin-like leucine-rich repeat receptor kinases. Expression of NS1a and NS1b is induced upon inoculation by both compatible and incompatible Sinorhizobium strains and is dependent on host perception of bacterial nodulation (Nod) factors. Both presence/absence and sequence polymorphisms of the paired receptors contribute to the evolution and functional diversification of the NS1 locus. A bacterial gene, designated rns1, is required for activation of NS1-mediated nodulation restriction. rns1 encodes a type I-secreted protein and is present in approximately 50% of the nearly 250 sequenced S. meliloti strains but not found in over 60 sequenced strains from the closely related species Sinorhizobium medicae. S. meliloti strains lacking functional rns1 are able to evade NS1-mediated nodulation blockade.


Assuntos
Medicago truncatula , Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Simbiose/genética , Genes Bacterianos , Especificidade da Espécie , Fixação de Nitrogênio
3.
Artigo em Inglês | MEDLINE | ID: mdl-38904752

RESUMO

The symbiosis between Mesorhizobium japonicum R7A and Lotus japonicus Gifu is an important model system for investigating the role of bacterial exopolysaccharides (EPS) in plant-microbe interactions. Previously we showed that R7A exoB mutants that are affected at an early stage of EPS synthesis and in lipopolysaccharide (LPS) synthesis induce effective nodules on L. japonicus Gifu after a delay, whereas exoU mutants affected in the biosynthesis of the EPS side chain induce small uninfected nodule primordia and are impaired in infection. The presence of a halo around the exoU mutant when grown on Calcofluor-containing media suggested the mutant secreted a truncated version of R7A EPS. A non-polar ΔexoA mutant defective in the addition of the first glucose residue to the EPS backbone was also severely impaired symbiotically. Here we used a suppressor screen to show that the severe symbiotic phenotype of the exoU mutant was due to secretion of an acetylated pentasaccharide, as both monomers and oligomers, by the same Wzx/Wzy system that transports wild-type exopolysaccharide. We also present evidence that the ΔexoA mutant secretes an oligosaccharide by the same transport system, contributing to its symbiotic phenotype. In contrast, ΔexoYF, and polar exoA and exoL mutants have a similar phenotype to exoB mutants, forming effective nodules after a delay. These studies provide substantial evidence that secreted incompatible EPS is perceived by the plant leading to abrogation of the infection process.

4.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716271

RESUMO

Plants and animals use cell surface receptors to sense and interpret environmental signals. In legume symbiosis with nitrogen-fixing bacteria, the specific recognition of bacterial lipochitooligosaccharide (LCO) signals by single-pass transmembrane receptor kinases determines compatibility. Here, we determine the structural basis for LCO perception from the crystal structures of two lysin motif receptor ectodomains and identify a hydrophobic patch in the binding site essential for LCO recognition and symbiotic function. We show that the receptor monitors the composition of the amphiphilic LCO molecules and uses kinetic proofreading to control receptor activation and signaling specificity. We demonstrate engineering of the LCO binding site to fine-tune ligand selectivity and correct binding kinetics required for activation of symbiotic signaling in plants. Finally, the hydrophobic patch is found to be a conserved structural signature in this class of LCO receptors across legumes that can be used for in silico predictions. Our results provide insights into the mechanism of cell-surface receptor activation by kinetic proofreading of ligands and highlight the potential in receptor engineering to capture benefits in plant-microbe interactions.


Assuntos
Fabaceae/genética , Lipopolissacarídeos/metabolismo , Simbiose/fisiologia , Fabaceae/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Cinética , Lipopolissacarídeos/genética , Micorrizas/fisiologia , Proteínas de Plantas/genética , Plantas/metabolismo , Rhizobium/fisiologia , Transdução de Sinais , Simbiose/genética
5.
J Am Chem Soc ; 143(46): 19374-19388, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34735142

RESUMO

Microalgae are photosynthetic organisms widely distributed in nature and serve as a sustainable source of bioproducts. Their carbohydrate components are also promising candidates for bioenergy production and bioremediation, but the structural characterization of these heterogeneous polymers in cells remains a formidable problem. Here we present a widely applicable protocol for identifying and quantifying the glycan content using magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy, with validation from glycosyl linkage and composition analysis deduced from mass-spectrometry (MS). Two-dimensional 13C-13C correlation ssNMR spectra of a uniformly 13C-labeled green microalga Parachlorella beijerinckii reveal that starch is the most abundant polysaccharide in a naturally cellulose-deficient strain, and this polymer adopts a well-organized and highly rigid structure in the cell. Some xyloses are present in both the mobile and rigid domains of the cell wall, with their chemical shifts partially aligned with the flat-ribbon 2-fold xylan identified in plants. Surprisingly, most other carbohydrates are largely mobile, regardless of their distribution in glycolipids or cell walls. These structural insights correlate with the high digestibility of this cellulose-deficient strain, and the in-cell ssNMR methods will facilitate the investigations of other economically important algae species.


Assuntos
Microalgas/química , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/análise , Configuração de Carboidratos , Microalgas/citologia
6.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681907

RESUMO

Huanglongbing (HLB) disease, also known as citrus greening disease, was first reported in the US in 2005. Since then, the disease has decimated the citrus industry in Florida, resulting in billions of dollars in crop losses and the destruction of thousands of acres of citrus groves. The causative agent of citrus greening disease is the phloem limited pathogen Candidatus Liberibacter asiaticus. As it has not been cultured, very little is known about the structural biology of the organism. Liberibacter are part of the Rhizobiaceae family, which includes nitrogen-fixing symbionts of legumes as well as the Agrobacterium plant pathogens. To better understand the Liberibacter genus, a closely related culturable bacterium (Liberibacter crescens or Lcr) has attracted attention as a model organism for structural and functional genomics of Liberibacters. Given that the structure of lipopolysaccharides (LPS) from Gram-negative bacteria plays a crucial role in mediating host-pathogen interactions, we sought to characterize the LPS from Lcr. We found that the major lipid A component of the LPS consisted of a pentaacylated molecule with a ß-6-GlcN disaccharide backbone lacking phosphate. The polysaccharide portion of the LPS was unusual compared to previously described members of the Rhizobiaceae family in that it contained ribofuranosyl residues. The LPS structure presented here allows us to extrapolate known LPS structure/function relationships to members of the Liberibacter genus which cannot yet be cultured. It also offers insights into the biology of the organism and how they manage to effectively attack citrus trees.


Assuntos
Lipídeo A/análise , Lipopolissacarídeos/análise , Lipopolissacarídeos/química , Sequência de Carboidratos , Liberibacter/metabolismo , Lipídeo A/química , Peso Molecular
7.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804872

RESUMO

Granulibacter bethesdensis can infect patients with chronic granulomatous disease, an immunodeficiency caused by reduced phagocyte NADPH oxidase function. Intact G. bethesdensis (Gb) is hypostimulatory compared to Escherichia coli, i.e., cytokine production in human blood requires 10-100 times more G. bethesdensis CFU/mL than E. coli. To better understand the pathogenicity of G. bethesdensis, we isolated its lipopolysaccharide (GbLPS) and characterized its lipid A. Unlike with typical Enterobacteriaceae, the release of presumptive Gb lipid A from its LPS required a strong acid. NMR and mass spectrometry demonstrated that the carbohydrate portion of the isolated glycolipid consists of α-Manp-(1→4)-ß-GlcpN3N-(1→6)-α-GlcpN-(1⇿1)-α-GlcpA tetra-saccharide substituted with five acyl chains: the amide-linked N-3' 14:0(3-OH), N-2' 16:0(3-O16:0), and N-2 18:0(3-OH) and the ester-linked O-3 14:0(3-OH) and 16:0. The identification of glycero-d-talo-oct-2-ulosonic acid (Ko) as the first constituent of the core region of the LPS that is covalently attached to GlcpN3N of the lipid backbone may account for the acid resistance of GbLPS. In addition, the presence of Ko and only five acyl chains may explain the >10-fold lower proinflammatory potency of GbKo-lipidA compared to E. coli lipid A, as measured by cytokine induction in human blood. These unusual structural properties of the G.bethesdensis Ko-lipid A glycolipid likely contribute to immune evasion during pathogenesis and resistance to antimicrobial peptides.


Assuntos
Acetobacteraceae/metabolismo , Doença Granulomatosa Crônica/microbiologia , Lipídeo A/química , Acetatos/análise , Acetobacteraceae/isolamento & purificação , Acetobacteraceae/patogenicidade , Sequência de Carboidratos , Citocinas/sangue , Doença Granulomatosa Crônica/sangue , Humanos , Lipídeo A/metabolismo
8.
J Biol Chem ; 291(40): 20946-20961, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27502279

RESUMO

In the symbiosis formed between Mesorhizobium loti strain R7A and Lotus japonicus Gifu, rhizobial exopolysaccharide (EPS) plays an important role in infection thread formation. Mutants of strain R7A affected in early exopolysaccharide biosynthetic steps form nitrogen-fixing nodules on L. japonicus Gifu after a delay, whereas mutants affected in mid or late biosynthetic steps induce uninfected nodule primordia. Recently, it was shown that a plant receptor-like kinase, EPR3, binds low molecular mass exopolysaccharide from strain R7A to regulate bacterial passage through the plant's epidermal cell layer (Kawaharada, Y., Kelly, S., Nielsen, M. W., Hjuler, C. T., Gysel, K., Muszynski, A., Carlson, R. W., Thygesen, M. B., Sandal, N., Asmussen, M. H., Vinther, M., Andersen, S. U., Krusell, L., Thirup, S., Jensen, K. J., et al. (2015) Nature 523, 308-312). In this work, we define the structure of both high and low molecular mass exopolysaccharide from R7A. The low molecular mass exopolysaccharide produced by R7A is a monomer unit of the acetylated octasaccharide with the structure (2,3/3-OAc)ß-d-RibfA-(1→4)-α-d-GlcpA-(1→4)-ß-d-Glcp-(1→6)-(3OAc)ß-d-Glcp-(1→6)-*[(2OAc)ß-d-Glcp-(1→4)-(2/3OAc)ß-d-Glcp-(1→4)-ß-d-Glcp-(1→3)-ß-d-Galp]. We propose it is a biosynthetic constituent of high molecular mass EPS polymer. Every new repeating unit is attached via its reducing-end ß-d-Galp to C-4 of the fourth glucose (asterisked above) of the octasaccharide, forming a branch. The O-acetylation occurs on the four glycosyl residues in a non-stoichiometric ratio, and each octasaccharide subunit is on average substituted with three O-acetyl groups. The availability of these structures will facilitate studies of EPR3 receptor binding of symbiotically compatible and incompatible EPS and the positive or negative consequences on infection by the M. loti exo mutants synthesizing such EPS variants.


Assuntos
Lotus/metabolismo , Mesorhizobium/metabolismo , Mutação , Epiderme Vegetal/metabolismo , Polissacarídeos Bacterianos/metabolismo , Simbiose/fisiologia , Configuração de Carboidratos , Lotus/genética , Lotus/microbiologia , Mesorhizobium/genética , Epiderme Vegetal/genética , Epiderme Vegetal/microbiologia , Polissacarídeos Bacterianos/genética
9.
Antimicrob Agents Chemother ; 60(8): 4690-700, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27216061

RESUMO

During infection, the sexually transmitted pathogen Neisseria gonorrhoeae (the gonococcus) encounters numerous host-derived antimicrobials, including cationic antimicrobial peptides (CAMPs) produced by epithelial and phagocytic cells. CAMPs have both direct and indirect killing mechanisms and help link the innate and adaptive immune responses during infection. Gonococcal CAMP resistance is likely important for avoidance of host nonoxidative killing systems expressed by polymorphonuclear granulocytes (e.g., neutrophils) and intracellular survival. Previously studied gonococcal CAMP resistance mechanisms include modification of lipid A with phosphoethanolamine by LptA and export of CAMPs by the MtrCDE efflux pump. In the related pathogen Neisseria meningitidis, a two-component regulatory system (2CRS) termed MisR-MisS has been shown to contribute to the capacity of the meningococcus to resist CAMP killing. We report that the gonococcal MisR response regulator but not the MisS sensor kinase is involved in constitutive and inducible CAMP resistance and is also required for intrinsic low-level resistance to aminoglycosides. The 4- to 8-fold increased susceptibility of misR-deficient gonococci to CAMPs and aminoglycosides was independent of phosphoethanolamine decoration of lipid A and the levels of the MtrCDE efflux pump and seemed to correlate with a general increase in membrane permeability. Transcriptional profiling and biochemical studies confirmed that expression of lptA and mtrCDE was not impacted by the loss of MisR. However, several genes encoding proteins involved in membrane integrity and redox control gave evidence of being MisR regulated. We propose that MisR modulates the levels of gonococcal susceptibility to antimicrobials by influencing the expression of genes involved in determining membrane integrity.


Assuntos
Aminoglicosídeos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/metabolismo , Gonorreia/metabolismo , Neisseria gonorrhoeae/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Gonorreia/tratamento farmacológico , Humanos , Lipídeo A/metabolismo , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria meningitidis/efeitos dos fármacos , Neisseria meningitidis/metabolismo
10.
Planta ; 242(5): 1123-38, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26067758

RESUMO

MAIN CONCLUSION: Chemical analyses and glycome profiling demonstrate differences in the structures of the xyloglucan, galactomannan, glucuronoxylan, and rhamnogalacturonan I isolated from soybean ( Glycine max ) roots and root hair cell walls. The root hair is a plant cell that extends only at its tip. All other root cells have the ability to grow in different directions (diffuse growth). Although both growth modes require controlled expansion of the cell wall, the types and structures of polysaccharides in the walls of diffuse and tip-growing cells from the same plant have not been determined. Soybean (Glycine max) is one of the few plants whose root hairs can be isolated in amounts sufficient for cell wall chemical characterization. Here, we describe the structural features of rhamnogalacturonan I, rhamnogalacturonan II, xyloglucan, glucomannan, and 4-O-methyl glucuronoxylan present in the cell walls of soybean root hairs and roots stripped of root hairs. Irrespective of cell type, rhamnogalacturonan II exists as a dimer that is cross-linked by a borate ester. Root hair rhamnogalacturonan I contains more neutral oligosaccharide side chains than its root counterpart. At least 90% of the glucuronic acid is 4-O-methylated in root glucuronoxylan. Only 50% of this glycose is 4-O-methylated in the root hair counterpart. Mono O-acetylated fucose-containing subunits account for at least 60% of the neutral xyloglucan from root and root hair walls. By contrast, a galacturonic acid-containing xyloglucan was detected only in root hair cell walls. Soybean homologs of the Arabidopsis xyloglucan-specific galacturonosyltransferase are highly expressed only in root hairs. A mannose-rich polysaccharide was also detected only in root hair cell walls. Our data demonstrate that the walls of tip-growing root hairs cells have structural features that distinguish them from the walls of other roots cells.


Assuntos
Parede Celular/química , Glucanos/química , Glycine max/química , Mananas/química , Pectinas/química , Raízes de Plantas/química , Xilanos/química , Galactose/análogos & derivados
11.
J Biol Chem ; 288(17): 12004-13, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23511636

RESUMO

Until now, the gene responsible for the 3-O-deacylation of lipid A among nitrogen-fixing endosymbionts has not been characterized. Several Gram-negative animal pathogens such as Salmonella enterica, Pseudomonas aeruginosa, and Bordetella bronchiseptica contain an outer membrane 3-O-deacylase (PagL) that has been implicated in host immune evasion. The role of 3-O-deacylated lipid A among nitrogen-fixing endosymbionts, plant endophytes, and plant pathogens has not been studied. However, D'Haeze et al. (D'Haeze, W., Leoff, C., Freshour, G., Noel, K. D., and Carlson, R. W. (2007) J. Biol. Chem. 282, 17101-17113) reported that the lipopolysaccharide from Rhizobium etli CE3 bacteroids isolated from host bean root nodules contained exclusively tetraacylated lipid A that lacked a lipid A ß-hydroxymyristyl residue, an observation that is consistent with the possibility of PagL activity being important in symbiosis. A putative pagL gene was identified in the R. etli genome sequence. With this information, we created a pagL(-) mutant strain derived from R. etli CE3. Using mass spectrometry, we demonstrated that the mutant lacks 3-O-deacylated lipid A. The parent and mutant LPS were very similar as determined by gel electrophoresis and glycosyl composition analysis using gas chromatography/mass spectrometry. However, fatty acid analysis showed that the mutant lipid A contained larger amounts of ß-hydroxypentadecanoic acid than that of the parent. Furthermore, the mutant was adversely affected in establishing symbiosis with its host, Phaseolus vulgaris.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Ácidos Graxos/metabolismo , Lipídeo A/biossíntese , Rhizobium/enzimologia , Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/genética , Ácidos Graxos/genética , Lipídeo A/genética , Phaseolus/microbiologia , Phaseolus/fisiologia , Rhizobium/genética , Simbiose/fisiologia
13.
Front Cell Infect Microbiol ; 14: 1418651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933693

RESUMO

Background: This study unveils the intricate functional association between cyclic di-3',5'-adenylic acid (c-di-AMP) signaling, cellular bioenergetics, and the regulation of lipopolysaccharide (LPS) profile in Porphyromonas gingivalis, a Gram-negative obligate anaerobe considered as a keystone pathogen involved in the pathogenesis of chronic periodontitis. Previous research has identified variations in P. gingivalis LPS profile as a major virulence factor, yet the underlying mechanism of its modulation has remained elusive. Methods: We employed a comprehensive methodological approach, combining two mutants exhibiting varying levels of c-di-AMP compared to the wild type, alongside an optimized analytical methodology that combines conventional mass spectrometry techniques with a novel approach known as FLATn. Results: We demonstrate that c-di-AMP acts as a metabolic nexus, connecting bioenergetic status to nuanced shifts in fatty acid and glycosyl profiles within P. gingivalis LPS. Notably, the predicted regulator gene cdaR, serving as a potent regulator of c-di-AMP synthesis, was found essential for producing N-acetylgalactosamine and an unidentified glycolipid class associated with the LPS profile. Conclusion: The multifaceted roles of c-di-AMP in bacterial physiology are underscored, emphasizing its significance in orchestrating adaptive responses to stimuli. Furthermore, our findings illuminate the significance of LPS variations and c-di-AMP signaling in determining the biological activities and immunostimulatory potential of P. gingivalis LPS, promoting a pathoadaptive strategy. The study expands the understanding of c-di-AMP pathways in Gram-negative species, laying a foundation for future investigations into the mechanisms governing variations in LPS structure at the molecular level and their implications for host-pathogen interactions.


Assuntos
Lipopolissacarídeos , Porphyromonas gingivalis , Transdução de Sinais , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/genética , Lipopolissacarídeos/metabolismo , Fatores de Virulência/metabolismo , Regulação Bacteriana da Expressão Gênica , Metabolismo Energético , Fosfatos de Dinucleosídeos/metabolismo , Ácidos Graxos/metabolismo , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
14.
Nat Commun ; 15(1): 986, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307857

RESUMO

Microalgae are a renewable and promising biomass for large-scale biofuel, food and nutrient production. However, their efficient exploitation depends on our knowledge of the cell wall composition and organization as it can limit access to high-value molecules. Here we provide an atomic-level model of the non-crystalline and water-insoluble glycoprotein-rich cell wall of Chlamydomonas reinhardtii. Using in situ solid-state and sensitivity-enhanced nuclear magnetic resonance, we reveal unprecedented details on the protein and carbohydrate composition and their nanoscale heterogeneity, as well as the presence of spatially segregated protein- and glycan-rich regions with different dynamics and hydration levels. We show that mannose-rich lower-molecular-weight proteins likely contribute to the cell wall cohesion by binding to high-molecular weight protein components, and that water provides plasticity to the cell-wall architecture. The structural insight exemplifies strategies used by nature to form cell walls devoid of cellulose or other glycan polymers.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolismo , Glicoproteínas/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Água/metabolismo
15.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365244

RESUMO

Members of microbial communities can substantially overlap in substrate use. However, what enables functionally redundant microorganisms to coassemble or even stably coexist remains poorly understood. Here, we show that during unstable successional dynamics on complex, natural organic matter, functionally redundant bacteria can coexist by partitioning low-concentration substrates even though they compete for one simple, dominant substrate. We allowed ocean microbial communities to self-assemble on leachates of the brown seaweed Fucus vesiculosus and then analyzed the competition among 10 taxonomically diverse isolates representing two distinct stages of the succession. All, but two isolates, exhibited an average of 90% ± 6% pairwise overlap in resource use, and functional redundancy of isolates from the same assembly stage was higher than that from between assembly stages, leading us to construct a simpler four-isolate community with two isolates from each of the early and late stages. We found that, although the short-term dynamics of the four-isolate communities in F. vesiculosus leachate was dependent on initial isolate ratios, in the long term, the four isolates stably coexist in F. vesiculosus leachate, albeit with some strains at low abundance. We therefore explored the potential for nonredundant substrate use by genomic content analysis and RNA expression patterns. This analysis revealed that the four isolates mainly differed in peripheral metabolic pathways, such as the ability to degrade pyrimidine, leucine, and tyrosine, as well as aromatic substrates. These results highlight the importance of fine-scale differences in metabolic strategies for supporting the frequently observed coexistence of large numbers of rare organisms in natural microbiomes.


Assuntos
Microbiota , Alga Marinha , Bactérias/genética
16.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352526

RESUMO

Bacteriophages, the viruses of bacteria, are proposed to drive bacterial population dynamics, yet direct evidence of their impact on natural populations is limited. Here we identified viral sequences in a metapopulation of wild plant-associated Pseudomonas spp. genomes. We discovered that the most abundant viral cluster does not encode an intact phage but instead encodes a tailocin - a phage-derived element that bacteria use to kill competitors for interbacterial warfare. Each pathogenic Pseudomonas sp. strain carries one of a few distinct tailocin variants, which target variable polysaccharides in the outer membrane of co-occurring pathogenic strains. Analysis of historic herbarium samples from the last 170 years revealed that the same tailocin and receptor variants have persisted in the Pseudomonas populations for at least two centuries, suggesting the continued use of a defined set of tailocin haplotypes and receptors. These results indicate that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control. One-Sentence Summary: Bacterial pathogens in a host-associated metapopulation use a repurposed prophage to kill their competitors.

17.
Science ; 384(6701): eado0713, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870284

RESUMO

Bacteria can repurpose their own bacteriophage viruses (phage) to kill competing bacteria. Phage-derived elements are frequently strain specific in their killing activity, although there is limited evidence that this specificity drives bacterial population dynamics. Here, we identified intact phage and their derived elements in a metapopulation of wild plant-associated Pseudomonas genomes. We discovered that the most abundant viral cluster encodes a phage remnant resembling a phage tail called a tailocin, which bacteria have co-opted to kill bacterial competitors. Each pathogenic Pseudomonas strain carries one of a few distinct tailocin variants that target the variable polysaccharides in the outer membrane of co-occurring pathogenic Pseudomonas strains. Analysis of herbarium samples from the past 170 years revealed that the same tailocin and bacterial receptor variants have persisted in Pseudomonas populations. These results suggest that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control.


Assuntos
Bacteriocinas , Fagos de Pseudomonas , Pseudomonas , Proteínas da Cauda Viral , Antibiose , Membrana Externa Bacteriana/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Variação Genética , Genoma Bacteriano , Polissacarídeos Bacterianos/metabolismo , Pseudomonas/metabolismo , Pseudomonas/virologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/metabolismo , Proteínas da Cauda Viral/metabolismo , Proteínas da Cauda Viral/genética , Terapia por Fagos/métodos
18.
J Bacteriol ; 195(7): 1504-14, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354750

RESUMO

Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients is characterized by a series of genotypic and phenotypic changes that reflect the transition from acute to chronic infection. These include the overproduction of the exopolysaccharide alginate and the loss of complete lipopolysaccharide (LPS). LPS is a major component of the Gram-negative outer membrane and is composed of lipid A, core oligosaccharide, and O antigen. In this report, we show that the LPS defect of the P. aeruginosa chronic infection isolate 2192 is temperature sensitive. When grown at 25°C, 2192 expresses serotype O1 LPS with a moderate chain length and in reduced amounts relative to those of a wild-type serotype O1 laboratory strain (stO1). In contrast, 2192 expresses no LPS O antigen when grown at 37°C. This is the first time that a temperature-sensitive defect in O-antigen production has been reported. Using complementation analyses with a constructed wbpM deletion mutant of stO1, we demonstrate that the temperature-sensitive O-antigen production defect in 2192 is due to a mutation in wbpM, which encodes a UDP-4,6-GlcNAc dehydratase involved in O-antigen synthesis. The mutation, a deletion of a single amino acid (V636) from the extreme C terminus of WbpM, renders the protein less stable than its wild-type counterpart. This residue of WbpM, which is critical for stability and function, is located outside of the recognized domains of the protein and may provide insight into the structure-function relationship of this enzyme, which is found in all 20 serotypes of P. aeruginosa. We also identify a promoter of wbpM, map a transcriptional start site of wbpM, and show that mucoidy plays a role in the loss of expression of high-molecular-weight LPS in this CF isolate.


Assuntos
Proteínas de Bactérias/genética , Vias Biossintéticas/genética , Hidroliases/genética , Antígenos O/biossíntese , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Deleção de Sequência , Proteínas de Bactérias/química , Fibrose Cística/complicações , Teste de Complementação Genética , Humanos , Hidroliases/química , Antígenos O/genética , Regiões Promotoras Genéticas , Estabilidade Proteica , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Temperatura , Sítio de Iniciação de Transcrição
19.
Mol Plant Microbe Interact ; 26(3): 319-29, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23134480

RESUMO

Rhizobial surface polysaccharides are required for nodule formation on the roots of at least some legumes but the mechanisms by which they act are yet to be determined. As a first step to investigate the function of exopolysaccharide (EPS) in the formation of determinate nodules, we isolated Mesorhizobium loti mutants affected in various steps of EPS biosynthesis and characterized their symbiotic phenotypes on two Lotus spp. The wild-type M. loti R7A produced both high molecular weight EPS and lower molecular weight (LMW) polysaccharide fractions whereas most mutant strains produced only LMW fractions. Mutants affected in predicted early biosynthetic steps (e.g., exoB) formed nitrogen-fixing nodules on Lotus corniculatus and L. japonicus 'Gifu', whereas mutants affected in mid or late biosynthetic steps (e.g., exoU) induced uninfected nodule primordia and, occasionally, a few infected nodules following a lengthy delay. These mutants were disrupted at the stage of infection thread (IT) development. Symbiotically defective EPS and Nod factor mutants functionally complemented each other in co-inoculation experiments. The majority of full-length IT observed harbored only the EPS mutant strain and did not show bacterial release, whereas the nitrogen-fixing nodules contained both mutants. Examination of the symbiotic proficiency of the exoU mutant on various L. japonicus ecotypes revealed that both host and environmental factors were linked to the requirement for EPS. These results reveal a complex function for M. loti EPS in determinate nodule formation and suggest that EPS plays a signaling role at the stages of both IT initiation and bacterial release.


Assuntos
Lotus/microbiologia , Mesorhizobium/genética , Polissacarídeos Bacterianos/metabolismo , Simbiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genes Reporter , Genótipo , Lotus/crescimento & desenvolvimento , Lotus/ultraestrutura , Mesorhizobium/crescimento & desenvolvimento , Mesorhizobium/metabolismo , Mesorhizobium/ultraestrutura , Mutagênese , Mutagênese Insercional , Fixação de Nitrogênio , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/isolamento & purificação , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/ultraestrutura , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Plântula/ultraestrutura , Ácidos Urônicos/análise , Ácidos Urônicos/metabolismo
20.
Glycobiology ; 23(5): 546-58, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23283001

RESUMO

An unusual α-(1,1)-galacturonic acid (GalA) lipid A modification has been reported in the lipopolysaccharide of a number of interesting Gram-negative bacteria, including the nitrogen-fixing bacteria Azospirillum lipoferum, Mesorhizobium huakuii and M. loti, the stalk-forming bacterium Caulobacter crescentus and the hyperthermophilic bacterium Aquifex aeolicus. However, the α-(1,1)-GalA transferase (GalAT) gene, which we have named RgtF, was not identified. Species of the Rhizobium genera produce lipid A with α-(1,4')-GalA but not α-(1,1)-GalA. The Rhizobium GalAT, RgtD, is the lipid A α-(1-4')-GalAT which utilizes the lipid donor dodecaprenyl-phosphate GalA (Dod-P-GalA) for GalA transfer. An additional Rhizobium GalAT, RgtE, is required for the biosynthesis of Dod-P-GalA. We predicted candidate rgtF genes in bacterial species known to produce lipid A with α-(1,1)-GalA. In order to determine the predicted rgtF gene function, we cloned the M. loti rgtF gene into an expression plasmid and introduced that plasmid into Rhizobium etli strains that do not contain the rgtF gene nor produce lipid A α-(1,1)-GalA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis combined with NMR studies revealed that the lipid As from these rgtF-complemented strains were modified with an additional α-(1,1)-GalA attached to the proximal glucosamine.


Assuntos
Proteínas de Bactérias/metabolismo , Galactosiltransferases/metabolismo , Genes Bacterianos , Lipídeo A/biossíntese , Mesorhizobium/enzimologia , Proteínas de Bactérias/genética , Galactosiltransferases/genética , Glicosilação , Lipídeo A/química , Mesorhizobium/genética , Rhizobium/genética , Rhizobium/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA