Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 66: 239-258, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971293

RESUMO

The microalga Nannochloropsis oceanica is considered a promising platform for the sustainable production of high-value lipids and biofuel feedstocks. However, current lipid yields of N. oceanica are too low for economic feasibility. Gaining fundamental insights into the lipid metabolism of N. oceanica could open up various possibilities for the optimization of this species through genetic engineering. Therefore, the aim of this study was to discover novel genes associated with an elevated neutral lipid content. We constructed an insertional mutagenesis library of N. oceanica, selected high lipid mutants by five rounds of fluorescence-activated cell sorting, and identified disrupted genes using a novel implementation of a rapid genotyping procedure. One particularly promising mutant (HLM23) was disrupted in a putative APETALA2-like transcription factor gene. HLM23 showed a 40%-increased neutral lipid content, increased photosynthetic performance, and no growth impairment. Furthermore, transcriptome analysis revealed an upregulation of genes related to plastidial fatty acid biosynthesis, glycolysis and the Calvin-Benson-Bassham cycle in HLM23. Insights gained in this work can be used in future genetic engineering strategies for increased lipid productivity of Nannochloropsis.


Assuntos
Microalgas , Estramenópilas , Biocombustíveis , Lipídeos/genética , Microalgas/genética , Mutagênese Insercional , Estramenópilas/genética
2.
Nat Plants ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384944

RESUMO

CO2 fixation is commonly limited by inefficiency of the CO2-fixing enzyme Rubisco. Eukaryotic algae concentrate and fix CO2 in phase-separated condensates called pyrenoids, which complete up to one-third of global CO2 fixation. Condensation of Rubisco in pyrenoids is dependent on interaction with disordered linker proteins that show little conservation between species. We developed a sequence-independent bioinformatic pipeline to identify linker proteins in green algae. We report the linker from Chlorella and demonstrate that it binds a conserved site on the Rubisco large subunit. We show that the Chlorella linker phase separates Chlamydomonas Rubisco and that despite their separation by ~800 million years of evolution, the Chlorella linker can support the formation of a functional pyrenoid in Chlamydomonas. This cross-species reactivity extends to plants, with the Chlorella linker able to drive condensation of some native plant Rubiscos in vitro and in planta. Our results represent an exciting frontier for pyrenoid engineering in plants, which is modelled to increase crop yields.

3.
Biotechnol Adv ; 52: 107836, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534633

RESUMO

Microalgae have the potential to become microbial cell factories for lipid production. Their ability to convert sunlight and CO2 into valuable lipid compounds has attracted interest from cosmetic, biofuel, food and feed industries. In order to make microalgae-derived products cost-effective and commercially competitive, enhanced growth rates and lipid productivities are needed, which require optimization of cultivation systems and strain improvement. Advances in genetic tool development and omics technologies have increased our understanding of lipid metabolism, which has opened up possibilities for targeted metabolic engineering. In this review we provide a comprehensive overview on the developments made to genetically engineer microalgal strains over the last 30 years. We focus on the strategies that lead to an increased lipid content and altered fatty acid profile. These include the genetic engineering of the fatty acid synthesis pathway, Kennedy pathway, polyunsaturated fatty acid and triacylglycerol metabolisms and fatty acid catabolism. Moreover, genetic engineering of specific transcription factors, NADPH generation and central carbon metabolism, which lead to increase of lipid accumulation are also reviewed.


Assuntos
Microalgas , Biocombustíveis , Ácidos Graxos Insaturados , Engenharia Genética , Lipídeos , Engenharia Metabólica , Microalgas/genética
4.
Nat Commun ; 8(1): 1647, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162801

RESUMO

CRISPR-Cas9-based genome engineering tools have revolutionized fundamental research and biotechnological exploitation of both eukaryotes and prokaryotes. However, the mesophilic nature of the established Cas9 systems does not allow for applications that require enhanced stability, including engineering at elevated temperatures. Here we identify and characterize ThermoCas9 from the thermophilic bacterium Geobacillus thermodenitrificans T12. We show that in vitro ThermoCas9 is active between 20 and 70 °C, has stringent PAM-preference at lower temperatures, tolerates fewer spacer-protospacer mismatches than SpCas9 and its activity at elevated temperatures depends on the sgRNA-structure. We develop ThermoCas9-based engineering tools for gene deletion and transcriptional silencing at 55 °C in Bacillus smithii and for gene deletion at 37 °C in Pseudomonas putida. Altogether, our findings provide fundamental insights into a thermophilic CRISPR-Cas family member and establish a Cas9-based bacterial genome editing and silencing tool with a broad temperature range.


Assuntos
Bacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endonucleases/química , Endonucleases/metabolismo , Edição de Genes , Geobacillus/enzimologia , Pseudomonas putida/genética , Bacillus/metabolismo , Proteínas de Bactérias/genética , Endonucleases/genética , Estabilidade Enzimática , Inativação Gênica , Genoma Bacteriano , Geobacillus/química , Geobacillus/genética , Temperatura Alta , Pseudomonas putida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA