Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125925

RESUMO

Dental plaque bacteria play an important role in the pathogenicity of periodontitis and peri-implantitis. Therefore, antimicrobial agents are one means of treatment. N-chlorotaurine (NCT) as an endogenous well-tolerated topical antiseptic could be of advantage for this purpose. Accordingly, its microbicidal activity against some dental plaque bacteria was investigated at therapeutic concentrations in vitro. In quantitative killing assays, the activity of NCT against planktonic bacteria and against biofilms grown for 48 h on implantation screws was tested. Electron microscopy was used to demonstrate the formation of biofilm and its morphological changes. The killing of planktonic bacteria of all tested species, namely Streptococcus sanguinis, Streptococcus salivarius, Streptococcus oralis, Streptococcus cristatus, Rothia aeria, and Capnocytophaga ochracea, was shown within 10-20 min by 1% NCT in 0.01 M phosphate-buffered saline at 37 °C. Bacteria grown on screws for 24 h were inactivated by 1% NCT after 15-20 min as well, but the formation of biofilm on the screws was visible in electron microscopy not before 48 h. The killing of biofilms by 1% NCT was demonstrated after 30 min (streptococci) and 40 min (R. aeria). As expected, NCT has broad activity against dental plaque bacteria as well and should be further investigated on its clinical efficacy in periodontitis and peri-implantitis.


Assuntos
Biofilmes , Placa Dentária , Taurina , Taurina/análogos & derivados , Taurina/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Placa Dentária/microbiologia , Humanos , Periodontite/microbiologia , Periodontite/tratamento farmacológico , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Streptococcus/efeitos dos fármacos
2.
Antimicrob Agents Chemother ; 66(4): e0227421, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35254091

RESUMO

Aspergillus terreus is an opportunistic causative agent of invasive aspergillosis and, in most cases, it is refractory to amphotericin B (AMB) therapy. Notably, AMB-susceptible Aspergillus terreus sensu stricto (s.s.) representatives exist which are also associated with poor clinical outcomes. Such findings may be attributable to drug tolerance, which is not detectable by antifungal susceptibility testing. Here, we tested in vitro antifungal susceptibility (AFST) and the fungicidal activity of AMB against 100 clinical isolates of A. terreus species complex in RPMI 1640 and antibiotic medium 3 (AM3). MICs ranged from 0.5 to 16 µg/mL for RPMI 1640 and from 1 to >16 mg/L for AM3. AMB showed medium-dependent activity, with fungicidal effects only in antibiotic medium 3, not in RPMI 1640. Furthermore, the presence of AMB-tolerant phenotypes of A. terreus has been examined by assessing the minimum duration for killing 99% of the population (MDK99) and evaluating the data obtained in a Galleria mellonella infection model. A time-kill curve analysis revealed that A. terreus with AMB MICs of ≤1 mg/L (susceptible range) displayed AMB-tolerant phenotypes, exhibiting MDK99s at 18 and 36 h, respectively. Survival rates of infected G. mellonella highlighted that AMB was effective against susceptible A. terreus isolates, but not against tolerant or resistant isolates. Our analysis reveals that A. terreus isolates which are defined as susceptible based on MIC may comprise tolerant phenotypes, which may, in turn, explain the worse outcome of AMB therapy for phenotypically susceptible isolates.


Assuntos
Anfotericina B , Antifúngicos , Anfotericina B/farmacologia , Antibacterianos/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus , Farmacorresistência Fúngica , Tolerância a Medicamentos , Testes de Sensibilidade Microbiana
3.
Adv Exp Med Biol ; 1370: 83-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35882784

RESUMO

Taurine haloamines, N-chlorotaurine (NCT, TauCl), and N-bromotaurine (NBT, TauBr) are formed by a reaction between taurine and hypohalous acids, HOCl and HOBr, respectively. The major source of endogenous taurine haloamines is neutrophils. Both NCT and NBT share strong anti-inflammatory and microbicidal activities supported by an absence of microbial resistance. In the light of these properties, a number of clinical studies have been performed to document their effectiveness in treatment of bacterial, fungal, and viral infections. The administration of NCT and NBT has been limited to topical application, as they are decomposed upon systemic delivery. This review summarizes current knowledge concerning the therapeutic use of NCT and NBT mainly in various skin disorders such as non-healing wounds, acne vulgaris, herpes zoster, and psoriasis. Moreover, the beneficial effect of NCT inhalation in early stages of COVID-19 and other viral respiratory infections is discussed. And finally, we would like to suggest that NCT might be used to inhibit the development of the cytokine storm through its capacity to suppress the production of IL-6.


Assuntos
Tratamento Farmacológico da COVID-19 , Doenças Transmissíveis , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Halogênios , Humanos , Neutrófilos , Taurina/farmacologia , Taurina/uso terapêutico
4.
Adv Exp Med Biol ; 1370: 99-111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35882785

RESUMO

Psoriasis is a chronic skin auto-inflammatory and systemic disorder. Novel treatments are needed to solve a plethora of cases refractory to current treatment regimens. N-bromotaurine (TauNH-Br), a natural taurine oxidizing derivative produced by inflammatory cells, has anti-inflammatory, antiproliferative, and antimicrobial properties. This evidence prompted us to use TauNH-Br as a local agent for treatment of therapy-refractory psoriasis. Two pustular-plaque psoriasis cases, unresponsive to systemic and local treatments, one with localized lesions and one with generalized lesions, were selected. Both applications primarily indicated a sufficient curative activity of 1% TauNH-Br in psoriasis lesions. Moreover, TauNH-Br co-administration with taurine and a novel olive oil formulation cut in half the time needed for TauNH-Br alone to cause the same regression of equivalent psoriasis plaque lesions in the same patient. Importantly, all adverse effects of TauNH-Br (erythema, itching, bleeding) could be minimized by the combination therapy. Periods of 2-7 weeks to achieve almost complete regression with this formulation were remarkably short as compared to conventional treatment regimens that both patients had followed previously. Of note, there was no relapse within 3 months of monitoring. Combination formulations containing TauNH-Br and olive oil could become an advantageous topical medication for treatment of psoriasis.


Assuntos
Exantema , Psoríase , Administração Tópica , Humanos , Azeite de Oliva/uso terapêutico , Psoríase/tratamento farmacológico , Taurina/análogos & derivados , Taurina/farmacologia , Taurina/uso terapêutico
5.
Adv Exp Med Biol ; 1155: 1015-1031, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468464

RESUMO

Taurine haloamines (N-chlorotaurine, N-bromotaurine) due to their strong antiseptic and anti-inflammatory properties are good candidates for topical application in treatment of skin inflammatory/infectious disorders. Recently, we have demonstrated that more stable N-bromotaurine analogs (N-dibromo-dimethyl taurine, N-monobromo-dimethyl taurine) and bromamine T show strong microbicidal and anti-inflammatory properties at concentrations well tolerated by human cells and tissue. Non-steroidal anti-inflammatory drugs (NSAIDs) with cyclooxygenase (COX) inhibitory activity are commonly used in various inflammatory diseases. However, systemic administration of NSAIDs may result in adverse side effects. For example, the use of ibuprofen in children with varicella is associated with enhanced serum levels of TNF-α and with increased risk of necrotizing soft tissue infections and secondary skin infections caused by invasive streptococci. The aim of this study was to examine combined immunomodulatory effects of bromamines and ibuprofen on J774.A1 macrophages. We have shown that the primary activity of ibuprofen, the inhibition of PGE2 production by activated macrophages was intensified in the presence of bromamines. Most importantly, the stimulatory effect of ibuprofen on production of inflammatory cytokines (TNF-α, IL-6) was inhibited by all tested bromamines. These observations indicate that bromamines may neutralize massive production of TNF-α at sites of inflammation, a side effect of ibuprofen. Therefore, we suggest that systemic administration of ibuprofen (NSAIDs) in treatment of inflammatory/infectious skin diseases should be supported by topical application of bromamines as an adjunctive therapy.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ibuprofeno/farmacologia , Macrófagos/efeitos dos fármacos , Taurina/análogos & derivados , Linhagem Celular , Citocinas/metabolismo , Dinoprostona/metabolismo , Humanos , Taurina/farmacologia
6.
Adv Exp Med Biol ; 1155: 1033-1048, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468465

RESUMO

The stable N-bromotaurine analogs (N-dibromo-dimethyl taurine, N-monobromo-dimethyl taurine), and bromamine T (BAT) show anti-inflammatory and microbicidal properties. These bromamines are good candidates for a treatment of skin infectious/inflammatory diseases as local antiseptics. Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), is commonly used in various infectious/inflammatory diseases due to its analgesic and antipyretic therapeutic effects. However, systemic administration of ibuprofen may also result in adverse side effects. It has been reported that ibuprofen enhances serum levels of TNF-α and worsens secondary skin infections caused by invasive streptococci (S. pyogenes). Recently we have demonstrated that bromamines inhibit the stimulatory effect of ibuprofen on the production of inflammatory cytokines (TNF-α, IL-6). The aim of this study was to examine the combined antibacterial actions of ibuprofen and bromamines against S. pyogenes and their joint effect on the generation of reactive oxygen species (ROS) by activated neutrophils and macrophages. We have shown that the microbicidal activity of bromamines against S. pyogenes was not altered by ibuprofen. On the other hand, co-administration of ibuprofen and bromamines markedly decreased the generation of ROS by activated neutrophils and macrophages. Finally, we discuss how the antioxidant combined effect of bromamines and ibuprofen may affect a local defense system.


Assuntos
Antibacterianos/farmacologia , Ibuprofeno/farmacologia , Macrófagos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Streptococcus pyogenes/efeitos dos fármacos , Taurina/análogos & derivados , Antioxidantes/farmacologia , Células Cultivadas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Taurina/farmacologia
7.
Mar Drugs ; 17(12)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795441

RESUMO

Bromophenols are a class of compounds occurring in red algae that are thought to play a role in chemical protection; however, their exact function is still not fully known. In order to investigate their occurrence, pure standards of seven bromophenols were isolated from a methanolic extract of the epiphytic red alga Vertebrata lanosa collected in Brittany, France. The structures of all compounds were determined by NMR and MS. Among the isolated substances, one new natural product, namely, 2-amino-5-(3-(2,3-dibromo-4,5-dihydroxybenzyl)ureido)pentanoic acid was identified. An HPLC method for the separation of all isolated substances was developed using a Phenomenex C8(2) Luna column and a mobile phase comprising 0.05% trifluoroacetic acid in water and acetonitrile. Method validation showed that the applied procedure is selective, linear (R2 0.999), precise (intra-day ≤ 6.28%, inter-day ≤ 5.21%), and accurate (with maximum displacement values of 4.93% for the high spikes, 4.80% for the medium spikes, and 4.30% for the low spikes). For all standards limits of detection (LOD) were lower than 0.04 µg/mL and limits of quantification (LOQ) lower than 0.12 µg/mL. Subsequently, the method was applied to determine the bromophenol content in Vertebrata lanosa samples from varying sampling sites and collection years showing values between 0.678 and 0.005 mg/g dry weight for different bromophenols with significant variations between the sampling years. Bioactivity of seven isolated bromophenols was tested in agar diffusion tests against Staphylococcus aureus and Escherichia coli bacteria. Three compounds showed a small zone of inhibition against both test organisms at a concentration of 100 µg/mL.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Hidrocarbonetos Bromados/análise , Hidrocarbonetos Bromados/química , Fenóis/análise , Fenóis/química , Rodófitas/química , Escherichia coli/efeitos dos fármacos , Hidrocarbonetos Bromados/farmacologia , Fenóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos
8.
Med Mycol ; 56(suppl_1): 102-125, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29538735

RESUMO

Species of Scedosporium and Lomentospora are considered as emerging opportunists, affecting immunosuppressed and otherwise debilitated patients, although classically they are known from causing trauma-associated infections in healthy individuals. Clinical manifestations range from local infection to pulmonary colonization and severe invasive disease, in which mortality rates may be over 80%. These unacceptably high rates are due to the clinical status of patients, diagnostic difficulties, and to intrinsic antifungal resistance of these fungi. In consequence, several consortia have been founded to increase research efforts on these orphan fungi. The current review presents recent findings and summarizes the most relevant points, including the Scedosporium/Lomentospora taxonomy, environmental distribution, epidemiology, pathology, virulence factors, immunology, diagnostic methods, and therapeutic strategies.


Assuntos
Antifúngicos/uso terapêutico , Ascomicetos/fisiologia , Farmacorresistência Fúngica Múltipla/genética , Micoses/microbiologia , Scedosporium/fisiologia , Antifúngicos/farmacologia , Ascomicetos/classificação , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Terapia Combinada , Ecologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Hospedeiro Imunocomprometido , Tipagem Molecular , Micoses/diagnóstico , Micoses/patologia , Micoses/terapia , Infecções Oportunistas/diagnóstico , Infecções Oportunistas/microbiologia , Infecções Oportunistas/patologia , Infecções Oportunistas/terapia , Scedosporium/classificação , Scedosporium/efeitos dos fármacos , Scedosporium/genética , Procedimentos Cirúrgicos Operatórios , Fatores de Virulência
9.
Mycopathologia ; 183(1): 161-170, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28702855

RESUMO

N-Chlorotaurine (NCT) is a mild long-lived oxidant that can be applied to sensitive body regions as an endogenous antiseptic. Enhancement of its microbicidal activity in the presence of proteinaceous material because of transchlorination, a postantibiotic/postantifungal effect and antitoxic activity renders it interesting for treatment of fungal infections, too. This is confirmed by first case applications in skin and mucous membranes of different body sites. Recent findings of good tolerability of inhaled NCT suggest further investigations of this substance for treatment of bronchopulmonary diseases, where microorganisms play a role, particularly multi-resistant ones. The availability of a well-tolerated and effective inhaled antiseptic with anti-inflammatory properties could be a significant progress, in particular for chronic pulmonary diseases, such as chronic obstructive pulmonary disease or cystic fibrosis.


Assuntos
Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Micoses/tratamento farmacológico , Taurina/análogos & derivados , Administração por Inalação , Administração Tópica , Animais , Humanos , Taurina/farmacologia , Taurina/uso terapêutico
10.
Artigo em Inglês | MEDLINE | ID: mdl-28223376

RESUMO

Lung infections with multiresistant pathogens are a major problem among patients suffering from cystic fibrosis (CF). N-Chlorotaurine (NCT), a microbicidal active chlorine compound with no development of resistance, is well tolerated upon inhalation. The aim of this study was to investigate the in vitro bactericidal and fungicidal activity of NCT in artificial sputum medium (ASM), which mimics the composition of CF mucus. The medium was inoculated with bacteria (Staphylococcus aureus, including some methicillin-resistant S. aureus [MRSA] strains, Pseudomonas aeruginosa, and Escherichia coli) or spores of fungi (Aspergillus fumigatus, Aspergillus terreus, Candida albicans, Scedosporium apiospermum, Scedosporium boydii, Lomentospora prolificans, Scedosporium aurantiacum, Scedosporium minutisporum, Exophiala dermatitidis, and Geotrichum sp.), to final concentrations of 107 to 108 CFU/ml. NCT was added at 37°C, and time-kill assays were performed. At a concentration of 1% (10 mg/ml, 55 mM) NCT, bacteria and spores were killed within 10 min and 15 min, respectively, to the detection limit of 102 CFU/ml (reduction of 5 to 6 log10 units). Reductions of 2 log10 units were still achieved with 0.1% (bacteria) and 0.3% (fungi) NCT, largely within 10 to 30 min. Measurements by means of iodometric titration showed oxidizing activity for 1, 30, 60, and >60 min at concentrations of 0.1%, 0.3%, 0.5%, and 1.0% NCT, respectively, which matches the killing test results. NCT demonstrated broad-spectrum microbicidal activity in the milieu of CF mucus at concentrations ideal for clinical use. The microbicidal activity of NCT in ASM was even stronger than that in buffer solution; this was particularly pronounced for fungi. This finding can be explained largely by the formation, through transhalogenation, of monochloramine, which rapidly penetrates pathogens.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Escherichia coli/efeitos dos fármacos , Fungos/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Escarro/microbiologia , Taurina/análogos & derivados , Fibrose Cística/microbiologia , Humanos , Pneumopatias Fúngicas/tratamento farmacológico , Pneumopatias Fúngicas/microbiologia , Testes de Sensibilidade Microbiana , Esporos Bacterianos/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Taurina/farmacologia
11.
Arch Microbiol ; 198(4): 389-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26980595

RESUMO

In a PVC tube as a model system for dental devices, Pseudomonas aeruginosa outcompetes Staphylococcus aureus and Klebsiella pneumoniae for the biofilm formation. P. aeruginosa has advantage over the other strains due to higher tolerance for low-nutrient situations or direct killing by the production of soluble factors like pyocyanin.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Materiais Dentários , Cloreto de Polivinila , Pseudomonas aeruginosa/fisiologia , Antibiose , Carga Bacteriana , Klebsiella pneumoniae/fisiologia , Testes de Sensibilidade Microbiana , Piocianina/metabolismo , Staphylococcus aureus/fisiologia
12.
Antimicrob Agents Chemother ; 59(10): 6454-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26239996

RESUMO

N-Chlorotaurine (NCT), a well-tolerated endogenous long-lived oxidant that can be applied topically as an antiseptic, was tested on its fungicidal activity against Scedosporium and Lomentospora, opportunistic fungi that cause severe infections with limited treatment options, mainly in immunocompromised patients. In quantitative killing assays, both hyphae and conidia of Scedosporium apiospermum, Scedosporium boydii, and Lomentospora prolificans (formerly Scedosporium prolificans) were killed by 55 mM (1.0%) NCT at pH 7.1 and 37°C, with a 1- to 4-log10 reduction in CFU after 4 h and a 4- to >6-log10 reduction after 24 h. The addition of ammonium chloride to NCT markedly increased this activity. LIVE/DEAD staining of conidia treated with 1.0% NCT for 0.5 to 3 h increased the permeability of the cell wall and membrane. Preincubation of the test fungi in 1.0% NCT for 10 to 60 min delayed the time to germination of conidia by 2 h to >12 h and reduced their germination rate by 10.0 to 100.0%. Larvae of Galleria mellonella infected with 1.0 × 10(7) conidia of S. apiospermum and S. boydii died at a rate of 90.0 to 100% after 8 to 12 days. The mortality rate was reduced to 20 to 50.0% if conidia were preincubated in 1.0% NCT for 0.5 h or if heat-inactivated conidia were used. Our study demonstrates the fungicidal activity of NCT against different Scedosporium and Lomentospora species. A postantifungal effect connected with a loss of virulence occurs after sublethal incubation times. The augmenting effect of ammonium chloride can be explained by the formation of monochloramine.


Assuntos
Cloreto de Amônio/farmacologia , Anti-Infecciosos Locais/farmacologia , Antifúngicos/farmacologia , Scedosporium/efeitos dos fármacos , Taurina/análogos & derivados , Animais , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Cloraminas/química , Cloraminas/farmacologia , Hifas/efeitos dos fármacos , Hifas/fisiologia , Larva/microbiologia , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Scedosporium/fisiologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia , Taurina/farmacologia
13.
Antimicrob Agents Chemother ; 59(7): 3778-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25870060

RESUMO

The polyene antifungal amphotericin B (AmB) is widely used to treat life-threatening fungal infections. Even though AmB resistance is exceptionally rare in fungi, most Aspergillus terreus isolates exhibit an intrinsic resistance against the drug in vivo and in vitro. Heat shock proteins perform a fundamental protective role against a multitude of stress responses, thereby maintaining protein homeostasis in the organism. In this study, we elucidated the role of heat shock protein 70 (Hsp70) family members and compared resistant and susceptible A. terreus clinical isolates. The upregulation of cytoplasmic Hsp70 members at the transcriptional as well as translational levels was significantly higher with AmB treatment than without AmB treatment, particularly in resistant A. terreus isolates, thereby indicating a role of Hsp70 proteins in the AmB response. We found that Hsp70 inhibitors considerably increased the susceptibility of resistant A. terreus isolates to AmB but exerted little impact on susceptible isolates. Also, in in vivo experiments, using the Galleria mellonella infection model, cotreatment of resistant A. terreus strains with AmB and the Hsp70 inhibitor pifithrin-µ resulted in significantly improved survival compared with that achieved with AmB alone. Our results point to an important mechanism of regulation of AmB resistance by Hsp70 family members in A. terreus and suggest novel drug targets for the treatment of infections caused by resistant fungal isolates.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Aspergilose/tratamento farmacológico , Farmacorresistência Fúngica/efeitos dos fármacos , Quimioterapia Combinada , Testes de Sensibilidade Microbiana , Mariposas/microbiologia
14.
Antimicrob Agents Chemother ; 58(4): 2235-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24492358

RESUMO

Many orthopedic surgeons consider surgical irrigation and debridement with prosthesis retention as a treatment option for postoperative infections. Usually, saline solution with no added antimicrobial agent is used for irrigation. We investigated the activity of N-chlorotaurine (NCT) against various biofilm-forming bacteria in vitro and thereby gained significant information on its usability as a soluble and well-tolerated active chlorine compound in orthopedic surgery. Biofilms of Staphylococcus aureus were grown on metal alloy disks and in polystyrene dishes for 48 h. Subsequently, they were incubated for 15 min to 7 h in buffered solutions containing therapeutically applicable concentrations of NCT (1%, 0.5%, and 0.1%; 5.5 to 55 mM) at 37°C. NCT inactivated the biofilm in a time- and dose-dependent manner. Scanning electron microscopy revealed disturbance of the biofilm architecture by rupture of the extracellular matrix. Assays with reduction of carboxanilide (XTT) showed inhibition of the metabolism of the bacteria in biofilms. Quantitative cultures confirmed killing of S. aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa biofilms on metal alloy disks by NCT. Clinical isolates were slightly more resistant than ATCC type strains, but counts of CFU were reduced at least 10-fold by 1% NCT within 15 min in all cases. NCT showed microbicidal activity against various bacterial strains in biofilms. Whether this can be transferred to the clinical situation should be the aim of future studies.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Taurina/análogos & derivados , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Taurina/farmacologia
15.
New Microbiol ; 37(3): 383-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25180854

RESUMO

N-chlorotaurine (NCT) has recently been shown to have bactericidal activity against bacterial biofilm on metal discs (Coraca-Huber et al., 2014). In a biofilm, Staphylococcus epidermidis polymerizes poly-N-acetylglucosamine (PNAG) to form an extracellular matrix (ECM). Pseudomonas aeruginosa does not express this PNAG and has been shown to be highly susceptible to NCT. We compared the action of NCT on S. epidermidis 1457, a PNAG positive strain (SE1457) and S. epidermidis 1457- M10 an isogenic PNAG negative mutant (SE1457 M10). NCT-mediated killing was more effective and quicker on the PNAG negative strain SE1457 M10. Bacteria hidden in biofilms for prolonged periods of time were generally more susceptible than freshly formed biofilms. The differences in NCT-mediated killing might not be direct effects since NCT did not react with the monomeric N-acetylglucosamine, but might be explained by denser growth in the PNAG-containing biofilm produced by the wild type strain, which results in delayed penetration of NCT. The higher susceptibility of older biofilms to NCTmediated killing could be explained by more pronounced 3D architecture and subsequent larger surface area for interactions with NCT.


Assuntos
Acetilglucosamina/metabolismo , Matriz Extracelular/metabolismo , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/metabolismo , Taurina/análogos & derivados , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Staphylococcus epidermidis/crescimento & desenvolvimento , Taurina/farmacologia
16.
Biomolecules ; 14(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39062502

RESUMO

Current microbiological methods for pneumonia diagnosis require invasive specimen collection and time-consuming analytical procedures. There is a need for less invasive and faster methods to detect lower respiratory tract infections. The analysis of volatile metabolites excreted by pathogenic microorganisms provides the basis for developing such a method. Given the synergistic role of Candida albicans in increasing the virulence of pathogenic bacteria causing pneumonia and the cross-kingdom metabolic interactions between microorganisms, we compare the emission of volatiles from Candida albicans yeasts and the bacteria Staphylococcus aureus using single and mixed co-cultures and apply that knowledge to human in vivo investigations. Gas chromatography-mass spectrometry (GC-MS) analysis resulted in the identification of sixty-eight volatiles that were found to have significantly different levels in cultures compared to reference medium samples. Certain volatiles were found in co-cultures that mainly originated from C. albicans metabolism (e.g., isobutyl acetate), whereas other volatiles primarily came from S. aureus (e.g., ethyl 2-methylbutyrate). Isopentyl valerate reflects synergic interactions of both microbes, as its level in co-cultures was found to be approximately three times higher than the sum of its amounts in monocultures. Hydrophilic-lipophilic-balanced (HLB) coated meshes for thin-film microextraction (TFME) were used to preconcentrate volatiles directly from bronchoalveolar lavage (BAL) specimens collected from patients suffering from ventilation-associated pneumonia (VAP), which was caused explicitly by C. albicans and S. aureus. GC-MS analyses confirmed the existence of in vitro-elucidated microbial VOCs in human specimens. Significant differences in BAL-extracted amounts respective to the pathogen-causing pneumonia were found. The model in vitro experiments provided evidence that cross-kingdom interactions between pathogenic microorganisms affect the synthesis of volatile compounds. The TFME meshes coated with HLB particles proved to be suitable for extracting VOCs from human material, enabling the translation of in vitro experiments on the microbial volatilome to the in vivo situation involving infected patients. This indicates the direction that should be taken for further clinical studies on VAP diagnosis based on volatile analysis.


Assuntos
Líquido da Lavagem Broncoalveolar , Candida albicans , Cromatografia Gasosa-Espectrometria de Massas , Staphylococcus aureus , Compostos Orgânicos Voláteis , Candida albicans/metabolismo , Staphylococcus aureus/metabolismo , Humanos , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Líquido da Lavagem Broncoalveolar/microbiologia , Líquido da Lavagem Broncoalveolar/química , Técnicas de Cocultura , Pneumonia/microbiologia , Pneumonia/metabolismo
17.
Antimicrob Agents Chemother ; 57(3): 1107-14, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23295936

RESUMO

Antibiotic resistance is a growing public health crisis. To address the development of bacterial resistance, the use of antibiotics has to be minimized for nonsystemic applications in humans, as well as in animals and plants. Possible substitutes with low potential for developing resistance are active chlorine compounds that have been in clinical use for over 180 years. These agents are characterized by pronounced differences in their chlorinating and/or oxidizing activity, with hypochlorous acid (HOCl) as the strongest and organic chloramines as the weakest members. Bacterial killing in clinical practice is often associated with unwanted side effects such as chlorine consumption, tissue irritation, and pain, increasing proportionally with the chlorinating/oxidizing potency. Since the chloramines are able to effectively kill pathogens (bacteria, fungi, viruses, protozoa), their application as anti-infectives is advisable, all the more so as they exhibit additional beneficial properties such as destruction of toxins, degradation of biofilms, and anticoagulative and anti-inflammatory activities. Within the ample field of chloramines, the stable N-chloro derivatives of ß-aminosulfonic acids are most therapeutically advanced. Being available as sodium salts, they distinguish themselves by good solubility and absence of smell. Important representatives are N-chlorotaurine, a natural compound occurring in the human immune system, and novel mono- and dichloro derivatives of dimethyltaurine, which feature improved stability.


Assuntos
Anti-Infecciosos Locais/química , Cloraminas/química , Compostos Clorados/química , Ácido Hipocloroso/química , Taurina/análogos & derivados , Animais , Anti-Infecciosos Locais/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Cloraminas/farmacologia , Compostos Clorados/farmacologia , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Halogenação , Humanos , Ácido Hipocloroso/farmacologia , Taurina/química , Taurina/farmacologia , Vírus/efeitos dos fármacos , Vírus/crescimento & desenvolvimento
18.
Antimicrob Agents Chemother ; 57(4): 1583-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23318794

RESUMO

Amphotericin B (AMB) is the predominant antifungal drug, but the mechanism of resistance is not well understood. We compared the in vivo virulence of an AMB-resistant Aspergillus terreus (ATR) isolate with that of an AMB-susceptible A. terreus isolate (ATS) using a murine model for disseminated aspergillosis. Furthermore, we analyzed the molecular basis of intrinsic AMB resistance in vitro by comparing the ergosterol content, cell-associated AMB levels, AMB-induced intracellular efflux, and prooxidant effects between ATR and ATS. Infection of immunosuppressed mice with ATS or ATR showed that the ATS strain was more lethal than the ATR strain. However, AMB treatment improved the outcome in ATS-infected mice while having no positive effect on the animals infected with ATR. The in vitro data demonstrated that ergosterol content is not the molecular basis for AMB resistance. ATR absorbed less AMB, discharged more intracellular compounds, and had better protection against oxidative damage than the susceptible strain. Our experiments showed that ergosterol content plays a minor role in intrinsic AMB resistance and is not directly associated with intracellular cell-associated AMB content. AMB might exert its antifungal activity by oxidative injury rather than by an increase in membrane permeation.


Assuntos
Anfotericina B/uso terapêutico , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergillus/patogenicidade , Farmacorresistência Fúngica/fisiologia , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Aspergillus/metabolismo , Farmacorresistência Fúngica/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana
19.
Antimicrob Agents Chemother ; 57(2): 924-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208720

RESUMO

Bacterial pathogens have specific virulence factors (e.g., toxins) that contribute significantly to the virulence and infectivity of microorganisms within the human hosts. Virulence factors are molecules expressed by pathogens that enable colonization, immunoevasion, and immunosuppression, obtaining nutrients from the host or gaining entry into host cells. They can cause pathogenesis by inhibiting or stimulating certain host functions. For example, in systemic Staphylococcus aureus infections, virulence factors such as toxic shock syndrome toxin 1 (TSST-1), staphylococcal enterotoxin A (SEA), and staphylococcal enterotoxin B (SEB) cause sepsis or toxic shock by uncontrolled stimulation of T lymphocytes and by triggering a cytokine storm. In vitro, these superantigens stimulate the proliferation of human peripheral blood mononuclear cells (PBMC) and the release of many cytokines. NVC-422 (N,N-dichloro-2,2-dimethyltaurine) is a broad-spectrum, fast-acting topical anti-infective agent against microbial pathogens, including antibiotic-resistant microbes. Using mass spectrometry, we demonstrate here that NVC-422 oxidizes methionine residues of TSST-1, SEA, SEB, and exfoliative toxin A (ETA). Exposure of virulence factors to 0.1% NVC-422 for 1 h prevented TSST-1-, SEA-, SEB-, and ETA-induced cell proliferation and cytokine release. Moreover, NVC-422 also delayed and reduced the protein A- and clumping factor-associated agglutination of S. aureus cultures. These results show that, in addition to its well-described direct microbicidal activity, NVC-422 can inactivate S. aureus virulence factors through rapid oxidation of methionines.


Assuntos
Anti-Infecciosos/farmacologia , Toxinas Bacterianas/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Taurina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Enterotoxinas/metabolismo , Exfoliatinas/metabolismo , Metionina/metabolismo , Oxirredução/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Proteína Estafilocócica A/metabolismo , Superantígenos/metabolismo , Taurina/metabolismo , Taurina/farmacologia
20.
Microbiology (Reading) ; 158(Pt 12): 3044-3053, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23059976

RESUMO

Volatile organic compounds (VOCs) released from or taken up by Streptococcus pneumoniae and Haemophilus influenzae cultures were analysed by means of GC-MS after adsorption of headspace samples on multi-bed sorption tubes. Sampling was performed at different time points during cultivation of bacteria to follow the dynamics of VOC metabolism. VOCs were identified not only by spectral library match but also based on retention times of native standards. As many as 34 volatile metabolites were released from S. pneumoniae and 28 from H. influenzae, comprising alcohols, aldehydes, esters, hydrocarbons, ketones and sulfur-containing compounds. For both species, acetic acid, acetaldehyde, methyl methacrylate, 2,3-butanedione and methanethiol were found in strongly elevated concentrations and 1-butanol and butanal in moderately elevated concentrations. In addition, characteristic volatile biomarkers were detected for both bacterial species and exclusively for S. pneumoniae, also catabolism of aldehydes (3-methylbutanal and hexanal) was found. The results obtained provide important input into the knowledge about volatile bacterial biomarkers, which may become particularly important for detection of pathogens in upper airways by breath-gas analysis in the future.


Assuntos
Haemophilus influenzae/metabolismo , Streptococcus pneumoniae/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Fatores de Tempo , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA