Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(30): 13499-13510, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35862745

RESUMO

The unique four-level photocycle characteristics of excited-state intramolecular proton transfer (ESIPT) materials enable population inversion and large spectral separation between absorption and emission through their respective enol and keto forms. This leads to minimal or no self-absorption losses, a favorable feature in acting as an optical gain medium. While conventional ESIPT materials with an enol-keto tautomerism process are widely known, zwitterionic ESIPT materials, particularly those with high photoluminescence, are scarce. Facilitated by the synthesis and characterization of a new family of 2-hydroxyphenyl benzothiazole (HBT) with fluorene substituents, HBT-Fl1 and HBT-Fl2, we herein report the first efficient zwitterionic ESIPT lasing material (HBT-Fl2). The zwitterionic ESIPT HBT-Fl2 not only shows a remarkably low solid-state amplified spontaneous emission (ASE) threshold of 5.3 µJ/cm2 with an ASE peak at 609 nm but also exhibits high ASE photostability. Coupled with its substantially large Stokes shift (≈236 nm ≈10,390 cm-1) and an extremely small overlap of excited-state absorption with ASE emission, comprehensive density functional theory (DFT) and time-dependent DFT studies reveal the zwitterionic characteristics of HBT-Fl2. In opposition to conventional ESIPT with π-delocalized tautomerism as observed in analogue HBT-Fl1 and parent HBT, HBT-Fl2 instead shows charge redistribution in the proton transfer through the fluorene conjugation. This structural motif provides a design tactic in the innovation of new zwitterionic ESIPT materials for efficient light amplification in red and longer-wavelength emission.


Assuntos
Fluorenos , Prótons
2.
Front Optoelectron ; 16(1): 46, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095740

RESUMO

White organic light-emitting diodes (WOLEDs) have several desirable features, but their commercialization is hindered by the poor stability of blue light emitters and high production costs due to complicated device structures. Herein, we investigate a standard blue emitting hole transporting material (HTM) N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine (NPB) and its exciplex emission upon combining with a suitable electron transporting material (ETM), 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole (TAZ). Blue and yellow OLEDs with simple device structures are developed by using a blend layer, NPB:TAZ, as a blue emitter as well as a host for yellow phosphorescent dopant iridium (III) bis(4-phenylthieno[3,2-c]pyridinato-N,C2')acetylacetonate (PO-01). Strategic device design then exploits the ambipolar charge transport properties of tetracene as a spacer layer to connect these blue and yellow emitting units. The tetracene-linked device demonstrates more promising results compared to those using a conventional charge generation layer (CGL). Judicious choice of the spacer prevents exciton diffusion from the blue emitter unit, yet facilitates charge carrier transport to the yellow emitter unit to enable additional exciplex formation. This complementary behavior of the spacer improves the blue emission properties concomitantly yielding reasonable yellow emission. The overall white light emission properties are enhanced, achieving CIE coordinates (0.36, 0.39) and color temperature (4643 K) similar to daylight. Employing intermolecular exciplex emission in OLEDs simplifies the device architecture via its dual functionality as a host and as an emitter.

3.
Chempluschem ; 85(8): 1762-1777, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32794378

RESUMO

A set of four symmetric, butterfly-shaped 4-(4-(decyloxy)phenyl)-2,6-di(thiophen-2-yl)pyridine (TPY) derivatives 2TPA-TPY (TPY center and triphenylamine end groups), 2CBZ-TPY (TPY center and N-ethyl carbazole end groups), 2TPY-TPA (triphenylamine center and TPY at the periphery) and 2TPY-CBZ (N-ethyl carbazole center and TPY at the periphery) was synthesized. The molecules show reverse saturable absorption (RSA) which is consistent with two-photon absorption (2PA) associated with excited-state absorption (ESA) when excited using a 532 nm laser beam. The molecules 2TPA-TPY and 2TPY-TPA possess extremely low limiting thresholds of 1.73 and 2.68 J cm-2 , respectively. An organic light-emitting diode (OLED) fabricated from 2TPA-TPY exhibits green emission with a maximum luminance of 207 cd m-2 , a current efficiency (ηCE ) of 1.51cd A-1 , a maximum power efficiency (ηPmax ) of 0.46 lm W-1 and an external quantum efficiency (ηEQE ) of 0.48 % at 100 cd m-2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA