Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Glycobiology ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088577

RESUMO

The prevalent human pathogen, mumps virus (MuV; orthorubulavirus parotitidis) causes various complications and serious sequelae, such as meningitis, encephalitis, deafness, and impaired fertility. Direct-acting antivirals (DAAs) targeting MuV which can prevent mumps and mumps-associated complications and sequelae are yet to be developed. Paramyxoviridae family members, such as MuV, possess viral surface hemagglutinin-neuraminidase (HN) protein with sialidase activity which facilitates efficient viral replication. Therefore, to develop DAAs targeting MuV we synthesized MuV sialidase inhibitors. It is proposed that the viral HN has a single functional site for N-acetylneuraminic acid (Neu5Ac) binding and sialidase activity. Further, the known MuV sialidase inhibitor is an analog of Neu5Ac-2,3-didehydro-2-deoxy-N-acetylneuraminic acid (DANA)-which lacks potency. DANA derivatives with higher MuV sialidase inhibitory potency are lacking. The MuV-HN-Neu5Ac binding site has a hydrophobic cavity adjacent to the C4 position of Neu5Ac. Exploiting this, here, we synthesized DANA derivatives with increasing hydrophobicity at its C4 position and created 3 novel sialidase inhibitors (Compounds 1, 2 and 3) with higher specificity for MuV-HN than DANA; they inhibited MuV replication step to greater extent than DANA. Furthermore, they also inhibited hemagglutination and the MuV infection step. The insight-that these 3 novel DANA derivatives possess linear hydrocarbon groups at the C4-hydroxyl group of DANA-could help develop highly potent sialidase inhibitors with high specificity for MuV sialidase, which may function as direct-acting MuV-specific antivirals.

2.
J Virol Methods ; 323: 114838, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914041

RESUMO

In influenza A virus-infected cells, newly synthesized viral neuraminidases (NAs) transiently localize at the host cell Golgi due to glycosylation, before their expression on the cell surface. It remains unproven whether Golgi-localized intracellular NAs exhibit sialidase activity. We have developed a sialidase imaging probe, [2-(benzothiazol-2-yl)-5-(non-1-yn-1-yl) phenyl]-α-D-N-acetylneuraminic acid (BTP9-Neu5Ac). This probe is designed to be cleaved by sialidase activity, resulting in the release of a hydrophobic fluorescent compound, 2-(benzothiazol-2-yl)-5-(non-1-yn-1-yl) phenol (BTP9). BTP9-Neu5Ac makes the location of sialidase activity visually detectable by the BTP9 fluorescence that results from the action of sialidase activity. In this study, we established a protocol to visualize the sialidase activity of intracellular NA at the Golgi of influenza A virus-infected cells using BTP9-Neu5Ac. Furthermore, we employed this fluorescence imaging protocol to elucidate the intracellular inhibition of laninamivir octanoate, an anti-influenza drug. At approximately 7 h after infection, newly synthesized viral NAs localized at the Golgi. Using our developed protocol, we successfully histochemically stained the sialidase activity of intracellular viral NAs localized at the Golgi. Importantly, we observed that laninamivir octanoate effectively inhibited the intracellular viral NA, in contrast to drugs like zanamivir or laninamivir. Our study establishes a visualization protocol for intracellular viral NA sialidase activity and visualizes the inhibitory effect of laninamivir octanoate on Golgi-localized intracellular viral NA in infected cells.


Assuntos
Antivirais , Inibidores Enzimáticos , Vírus da Influenza A , Neuraminidase , Proteínas Virais , Humanos , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/enzimologia , Neuraminidase/análise , Neuraminidase/antagonistas & inibidores , Imagem Óptica/métodos , Zanamivir/farmacologia , Proteínas Virais/análise , Proteínas Virais/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia
3.
Viruses ; 16(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38932120

RESUMO

A gene delivery system utilizing lentiviral vectors (LVs) requires high transduction efficiency for successful application in human gene therapy. Pseudotyping allows viral tropism to be expanded, widening the usage of LVs. While vesicular stomatitis virus G (VSV-G) single-pseudotyped LVs are commonly used, dual-pseudotyping is less frequently employed because of its increased complexity. In this study, we examined the potential of phenotypically mixed heterologous dual-pseudotyped LVs with VSV-G and Sendai virus hemagglutinin-neuraminidase (SeV-HN) glycoproteins, termed V/HN-LV. Our findings demonstrated the significantly improved transduction efficiency of V/HN-LV in various cell lines of mice, cynomolgus monkeys, and humans compared with LV pseudotyped with VSV-G alone. Notably, V/HN-LV showed higher transduction efficiency in human cells, including hematopoietic stem cells. The efficient incorporation of wild-type SeV-HN into V/HN-LV depended on VSV-G. SeV-HN removed sialic acid from VSV-G, and the desialylation of VSV-G increased V/HN-LV infectivity. Furthermore, V/HN-LV acquired the ability to recognize sialic acid, particularly N-acetylneuraminic acid on the host cell, enhancing LV infectivity. Overall, VSV-G and SeV-HN synergistically improve LV transduction efficiency and broaden its tropism, indicating their potential use in gene delivery.


Assuntos
Vetores Genéticos , Proteína HN , Lentivirus , Vírus Sendai , Transdução Genética , Proteínas do Envelope Viral , Animais , Humanos , Vetores Genéticos/genética , Lentivirus/genética , Vírus Sendai/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Camundongos , Proteína HN/genética , Proteína HN/metabolismo , Linhagem Celular , Macaca fascicularis , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Tropismo Viral , Células HEK293 , Técnicas de Transferência de Genes , Terapia Genética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA