Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R271-R280, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622082

RESUMO

In humans, skin blood flux (SkBF) and eccrine sweating are tightly coupled, suggesting common neural control and regulation. This study was designed to separate these two sympathetic nervous system end-organ responses via nonadrenergic SkBF-decreasing mechanical perturbations during heightened sudomotor drive. We induced sweating physiologically via whole body heat stress using a high-density tube-lined suit (protocol 1; 2 women, 4 men), and pharmacologically via forearm intradermal microdialysis of two steady-state doses of a cholinergic agonist, pilocarpine (protocol 2; 4 women, 3 men). During sweating induction, we decreased SkBF via three mechanical perturbations: arm and leg dependency to engage the cutaneous venoarteriolar response (CVAR), limb venous occlusion to engage the CVAR and decrease perfusion pressure, and limb arterial occlusion to cause ischemia. In protocol 1, heat stress increased arm cutaneous vascular conductance and forearm sweat rate (capacitance hygrometry). During heat stress, despite decreases in SkBF during each of the acute (3 min) mechanical perturbations, eccrine sweat rate was unaffected. During heat stress with extended (10 min) ischemia, sweat rate decreased. In protocol 2, both pilocarpine doses (ED50 and EMAX) increased SkBF and sweat rate. Each mechanical perturbation resulted in decreased SkBF but minimal changes in eccrine sweat rate. Taken together, these data indicate that a wide range of acute decreases in SkBF do not appear to proportionally decrease either physiologically- or pharmacologically induced eccrine sweating in peripheral skin. This preservation of evaporative cooling despite acutely decreased SkBF could have consequential impacts for heat storage and balance during changes in body posture, limb position, or blood flow restrictive conditions.


Assuntos
Pilocarpina , Sudorese , Masculino , Humanos , Feminino , Pilocarpina/farmacologia , Pele/irrigação sanguínea , Reflexo , Perfusão , Temperatura Alta
2.
Skin Pharmacol Physiol ; 34(3): 162-166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33794540

RESUMO

Bradykinin increases skin blood flow via a cGMP mechanism but its role in sweating in vivo is unclear. There is a current need to translate cell culture and nonhuman paw pad studies into in vivo human preparations to test for therapeutic viability for disorders affecting sweat glands. Protocol 1: physiological sweating was induced in 10 healthy subjects via perfusing warm (46-48°C) water through a tube-lined suit while bradykinin type 2 receptor (B2R) antagonist (HOE-140; 40 µM) and only the vehicle (lactated Ringer's) were perfused intradermally via microdialysis. Heat stress increased sweat rate (HOE-140 = +0.79 ± 0.12 and vehicle = +0.64 ± 0.10 mg/cm2/min), but no differences were noted with B2R antagonism. Protocol 2: pharmacological sweating was induced in 6 healthy subjects via intradermally perfusing pilocarpine (1.67 mg/mL) followed by the same B2R antagonist approach. Pilocarpine increased sweating (HOE-140 = +0.38 ± 0.16 and vehicle = +0.32 ± 0.12 mg/cm2/min); again no differences were observed with B2R antagonism. Last, 5 additional subjects were recruited for various control experiments which identified that a functional dose of HOE-140 was utilized and it was not sudorific during normothermic conditions. These data indicate B2R antagonists do not modulate physiologically or pharmacologically induced eccrine secretion volumes. Thus, B2R agonist/antagonist development as a potential therapeutic target for hypo- and hyperhidrosis appears unwarranted.


Assuntos
Antagonistas de Receptor B2 da Bradicinina/farmacologia , Bradicinina/análogos & derivados , Sudorese/efeitos dos fármacos , Bradicinina/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/fisiologia , Humanos , Pilocarpina/farmacologia , Receptor B2 da Bradicinina/metabolismo , Pele/metabolismo , Sudorese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA