Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Langmuir ; 39(22): 7958-7967, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37231652

RESUMO

The Langmuir technique was applied for the first time to compare the layers obtained by spreading lipid liquid-crystalline nanoparticles monoolein 1-oleoyl-rac-glycerol (GMO)/Pluronic F108 cubosomes with the monolayers obtained by mixing the same components in chloroform at the air-water interface. The differences in the monolayer behavior and in the acting intermolecular forces were examined. The similarity of the isotherms obtained for the mixed components system and the cubosome-derived layer proved the disintegration of cubosomes into a single monolayer upon contact with the air-water interface. Despite the low Pluronic F108 content in both types of layers, a strong structural role of this stabilizer was also demonstrated. Cubosome-derived systems supported on hydrophilic mica substrates were prepared either using the combined Langmuir-Blodgett and Langmuir-Schaefer technique or via direct adsorption from the solution. The topographies of the obtained layers were studied by atomic force microscopy (AFM). Images obtained in the air mode revealed the disintegration of cubosomes and the formation of large crystallized structures of the polymer, while AFM imaging performed in water confirmed the presence of intact cubosomes on the surface of mica. We proved that the original structure of cubosomes remains on one condition: the films must not dry out; therefore, the aqueous environment must be preserved. This new approach provides an explanation in the ongoing discussion of what happens to lipid nanoparticles with or without cargo when they come into contact with an interface.

2.
Mol Pharm ; 19(8): 2818-2831, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849547

RESUMO

Here, we propose tailored lipid liquid-crystalline carriers (cubosomes), which incorporate an anticancer drug (doxorubicin) and complexed short-lived α-emitter (bismuth-213), as a strategy to obtain more effective action toward the cancer cells. Cubosomes were formulated with doxorubicin (DOX) and an amphiphilic ligand (DOTAGA-OA), which forms stable complexes with 213Bi radionuclide. The behavior of DOX incorporated into the carrier together with the chelating agent was investigated, and the drug liberation profile was determined. The experiments revealed that the presence of the DOTAGA-OA ligand affects the activity of DOX when they are incorporated into the same carrier. This unexpected influence was explained based on the results of release studies, which proved the contribution of electrostatics in molecular interactions between the positively charged DOX and negatively charged DOTAGA-OA in acidic and neutral solutions. A significant decrease in the viability of HeLa cancer cells was achieved using sequential cell exposure: first to the radiolabeled cubosomes containing 213Bi complex and next to DOX-doped cubosomes. Therefore, the sequential procedure for the delivery of both drugs encapsulated in cubosomes is suggested for further biological and in vivo studies.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Ligantes , Lipídeos , Nanopartículas/química , Tamanho da Partícula
3.
Phys Chem Chem Phys ; 24(5): 3066-3077, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35040466

RESUMO

Lipidic-liquid crystalline nanostructures (lipidic cubic phases), which are biomimetic and stable in an excess of water, were used as a convenient environment to investigate the transport properties of the membrane antiporter E. coli CLC-1 (EcCLC). The chloride ion transfer by EcCLC was studied by all-atom molecular dynamics simulations combined with electrochemical methods at pH 7 and pH 5. The cubic phase film was used as the membrane between the chloride donor and receiving compartments and it was placed on the glassy carbon electrode and immersed in the chloride solution. Structural characterization of lipidic mesoscopic systems with and without the incorporation of EcCLC was performed using small-angle X-ray scattering. The EcCLC transported chloride ions more efficiently at more acidic pH, and the resistance of the film decreased at lower pH. 4,4-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) employed as an inhibitor of the protein was shown to decrease the transport efficiency upon hydrolysis to DADS at both pH 7 and pH 5. The molecular dynamics simulations, performed for the first time in lipidic cubic phases for EcCLC, allowed studying the collective movements of chloride ions which can help in elucidating the mechanism of transporting the ions by the EcCLC antiporter. The protein modified lipidic cubic phase film is a convenient and simple system for screening potential inhibitors of integral membrane proteins, as demonstrated by the example of the EcCLC antiporter. The use of lipidic cubic phases may also be important for the further development of new electrochemical sensors for membrane proteins and enzyme electrodes.


Assuntos
Antiporters , Escherichia coli , Cloretos/metabolismo , Escherichia coli/metabolismo , Lipídeos , Simulação de Dinâmica Molecular
4.
Anal Chem ; 93(39): 13106-13111, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34546044

RESUMO

We report here on a new generation of optical ion-selective sensors benefiting from cubosomes or hexosomes-nanostructural lipid liquid phase. Cubosome as well as hexosome optodes offer biocompatibility, self-assembly preparation, high stability in solution, and unique, tunable analytical performance. The temperature trigger reversibly changes the lipid nanoparticle internal structure-changing analyte access to the bulk of the probe and ultimately affecting the response pattern. Thus, cubosome or hexosome optodes are highly promising alternatives to conventional polymeric based optical nanoprobes.

5.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708846

RESUMO

BACKGROUND: Multidrug resistance (MDR) is an emerging problem in the treatment of cancer. Therefore, there is a necessity for novel strategies that would sensitize tumor cells to the administered chemotherapeutics. One of the innovative approaches in fighting drug-resistant tumors is the treatment of cancer with microRNA (miRNA), or the use of cubosomes (lipid nanoparticles) loaded with drugs. Here, we present a study on a novel approach, which combines both tools. METHODS: Cubosomes loaded with miR-7-5p and chemotherapeutics were developed. The effects of drug- and miRNA-loaded vehicles on glioma- (A172, T98G), papillary thyroid- (TPC-1) and cervical carcinoma-derived (HeLa) cells were analyzed using molecular biology techniques, including quantitative real-time PCR, MTS-based cell proliferation test, flow cytometry and spheroids formation assay. RESULTS: The obtained data indicate that miR-7-5p increases the sensitivity of the tested cells to the drug, and that nanoparticles loaded with both miRNA and the drug produce a greater anti-tumor effect in comparison to the free drug treatment. It was found that an increased level of apoptosis in the drug/miRNA co-treated cells is accompanied by an alternation in the expression of the genes encoding for key MDR proteins of the ABC family. CONCLUSIONS: Overall, co-administration of miR-7-5p with a chemotherapeutic can be considered a promising strategy, leading to reduced MDR and the induction of apoptosis in cancer cells.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , MicroRNAs/administração & dosagem , Neoplasias/terapia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , MicroRNAs/genética , MicroRNAs/farmacologia , Neoplasias/genética
6.
Langmuir ; 35(50): 16650-16660, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31746606

RESUMO

The effect of phytantriol (PT)-based liquid-crystalline nanoparticles, cubosomes, on the lipid bilayer membranes has been investigated using the combined Langmuir-Blodgett/Langmuir-Schaefer (LB-LS) technique to form an h-1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) monolayer at the air-water interface and transfer the lipid bilayer onto the Au(111) substrate. Changes of the compression isotherms confirmed incorporation of cubosomes dispersed in the subphase into the h-DMPC monolayer at the air-water interface. The photon polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements of the gold electrode covered by the transferred DMPC bilayer showed for the first time how the incorporation of cubosome material affects the orientation and conformation of lipid molecules in the membrane. Exposure to cubosomes affected the packing of d54-DMPC bilayers and introduced disorder of chains by increasing the contribution of gauche conformation. The decrease of the tilt angle of the acyl chains of adsorbed DMPC in the whole range of potentials applied to the gold electrode confirmed that incorporation of cubosome material results in a more tightly packed bilayer. The presence of phytantriol molecules within the d63-DMPC matrix was confirmed by PM-IRRAS studies of the PT-related bands. The LB and PM-IRRAS studies demonstrated in a convincing way that PT-based cubosomes change the organization of model lipid layers leading to structural changes of the membranes which have to be taken into consideration when PT-cubosomes are employed as drug carriers.

7.
Langmuir ; 32(37): 9640-8, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27550742

RESUMO

The interactions of liquid-crystalline monoolein (GMO) cubic phase nanoparticles with various model lipid membranes spread at the air-solution interface by the Langmuir technique were investigated. Cubosomes have attracted attention as potential biocompatible drug delivery systems, and thus understanding their mode of interaction with membranes is of special interest. Cubosomes spreading at the air-water interface as well as interactions with a monolayer of 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) compressed to different surface pressures were studied by monitoring surface pressure-time dependencies at constant area. Progressive incorporation of the nanoparticles was shown to lead to mixed monolayer formation. The concentration of cubosomes influenced the mechanism of incorporation, as well as the fluidity and permeability of the resulting lipid membranes. Brewster angle microscopy images reflected the dependence of the monolayer structure on the cubosomes presence in the subphase. A parameter Csat was introduced to indicate the point of saturation of the lipid membrane with the cubosomal material. This parameter was found to depend on the surface pressure showing that the cubosomes disintegrate in prolonged contact with the membrane, filling available voids in the lipid membrane. At highest surface pressures when the layer is most compact, the penetration of cubosomal material is not possible and only some exchange with the membrane lipid becomes the route of including GMO into the layer. Finally, comparative studies of the interactions between lipids with various headgroup charges with cubosomes suggest that at high surface pressure an exchange of lipid component between the monolayer and the cubosome in its intact form may occur.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Lipídeos de Membrana/química , Nanopartículas/química , 1,2-Dipalmitoilfosfatidilcolina/química
8.
Langmuir ; 31(46): 12753-61, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26513537

RESUMO

Lyotropic liquid crystalline systems are excellent carriers for drugs due to their biocompatibility, stability in aqueous environment, and well-defined structure that allow them to host significantly larger amounts of drugs than carriers such as liposomes or gold nanoparticles. Incorporating the drug within the mesophase gel, or the cubosome/hexosome nanoparticles, decreased its toxic effects toward healthy cells, while appropriate mechanisms can stimulate the release of the drug from the carrier when it approaches the cancerous cell environment. Electrochemical methods-chronocoulometry and voltammetry at micro and normal size electrodes-are used for the first time to simultaneously determine the diffusion coefficients and effective concentrations of a toxic anticancer drug, doxorubicin, in the channels of three liquid-crystalline lipidic cubic phases. This approach was instrumental in demonstrating that the drug diffusion and kinetics of release from the mesophases depend on the aqueous channel size, which in turn is related to the identity and structure of the amphiphilic molecules used for the formation of the mesophase. Structural parameters of the cubic phases with the incorporated drug were characterized by small-angle X-ray scattering (SAXS), and molecular dynamics simulations were applied in order to describe the differences in the distribution of doxorubicin in the cubic phase matrix at acidic and neutral pH. The release of the drug from the phase was retarded at physiological pH, while at lower pH, corresponding to the cancer environment, it was accelerated, provided that suitable amphiphilic molecules were employed for the construction of the liquid crystal drug delivery system.


Assuntos
Portadores de Fármacos/química , Cristais Líquidos/química , Preparações de Ação Retardada , Difusão , Doxorrubicina/química , Eletroquímica , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Água/química
9.
Langmuir ; 30(5): 1383-90, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24443890

RESUMO

Bicontinuous lipidic cubic phases (LCPs) exhibit a combination of material properties that make them highly interesting for various biomaterial applications: they are nontoxic, biodegradable, optically transparent, thermodynamically stable in excess water, and can incorporate active molecules of virtually any polarity. Here we present a molecular system comprising host lipid, water, and designed lipidic additive, which form a structured, pH-sensitive lipidic matrix for hydrophilic as well as hydrophobic drug incorporation and release. The model drug doxorubicin (Dox) was loaded into the LCP. Tunable interactions with the lipidic matrix led to the observed pH-dependent drug release from the phase. The rate of Dox release from the cubic phase at pH 7.4 was low but increased significantly at more acidic pH. A small amount of a tailored diacidic lipid (lipid 1) added to the monoolein LCP modified the release rate of the drug. Phase identity and structural parameters of pure and doped mesophases were characterized by small-angle X-ray scattering (SAXS), and release profiles from the matrix were monitored electrochemically. Analysis of the release kinetics revealed that the total amount of drug released from the LCP matrix is linearly dependent on the square root of time, implying that the release mechanism proceeds according to the Higuchi model.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos/química , Doxorrubicina/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Oxirredução
10.
J Colloid Interface Sci ; 674: 982-992, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964002

RESUMO

HYPOTHESIS: We hypothesize that simultaneous incorporation of ion channel peptides (in this case, potassium channel as a model) and hydrophobic magnetite Fe3O4 nanoparticles (hFe3O4NPs) within lipidic hexagonal mesophases, and aligning them using an external magnetic field can significantly enhance ion transport through lipid membranes. EXPERIMENTS: In this study, we successfully characterized the incorporation of gramicidin membrane ion channels and hFe3O4NPs in the lipidic hexagonal structure using SAXS and cryo-TEM methods. Additionally, we thoroughly investigated the conductive characteristics of freestanding films of lipidic hexagonal mesophases, both with and without gramicidin potassium channels, utilizing a range of electrochemical techniques, including impedance spectroscopy, normal pulse voltammetry, and chronoamperometry. FINDINGS: Our research reveals a state-of-the-art breakthrough in enhancing ion transport in lyotropic liquid crystals as matrices for integral proteins and peptides. We demonstrate the remarkable efficacy of membranes composed of hexagonal lipid mesophases embedded with K+ transporting peptides. This enhancement is achieved through doping with hFe3O4NPs and exposure to a magnetic field. We investigate the intricate interplay between the conductive properties of the lipidic hexagonal structure, hFe3O4NPs, gramicidin incorporation, and the influence of Ca2+ on K+ channels. Furthermore, our study unveils a new direction in ion channel studies and biomimetic membrane investigations, presenting a versatile model for biomimetic membranes with unprecedented ion transport capabilities under an appropriately oriented magnetic field. These findings hold promise for advancing membrane technology and various biotechnological and biomedical applications of membrane proteins.


Assuntos
Gramicidina , Transporte de Íons , Cristais Líquidos , Nanopartículas de Magnetita , Cristais Líquidos/química , Gramicidina/química , Nanopartículas de Magnetita/química , Peptídeos/química , Tamanho da Partícula , Canais Iônicos/química , Canais Iônicos/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/química
11.
Bioelectrochemistry ; 144: 108042, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34942573

RESUMO

The lipid cubic phase (LCP) is a nanomaterial composed of water channels surrounded by lipid bilayers. LCPs are stable at room temperature and are biocompatible. These features make the lipid cubic phases similar to biological membranes, and hence, are favorable for embedding membrane proteins. We show that the monoolein cubic phase deposited on the electrode forms a 3D lipid bilayer film convenient for electrochemical investigations of membrane proteins. In this research, we studied the effect of embedding an ionophoric peptide, gramicidin A (gA), on the structure and properties of the LCP film. The phase identity and structural parameters of the gramicidin-doped phase were characterized by small-angle X-ray scattering (SAXS). The potassium ion transport through the film were studied by electroanalytical methods: alternating current voltammetry (ACV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). Increased values for the current of the gramicidin-doped cubic phase compared to the empty cubic phase and changes of the EIS parameters confirmed that the peptide remained in the film in its active dimeric form. Our results show that the LCP can be considered a suitable 3D biomimetic film for the investigation of ion channels and other transporting membrane proteins, and for their application in electrochemical sensors.


Assuntos
Gramicidina
12.
ACS Biomater Sci Eng ; 8(10): 4354-4364, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173110

RESUMO

Understanding the interactions between drugs and lipid membranes is a prerequisite for finding the optimal way to deliver drugs into cells. Coadministration of statins and anticancer agents has been reported to have a positive effect on anticancer therapy. In this study, we elucidate the mechanism by which simvastatin (SIM) improves the efficiency of biological membrane penetration by the chemotherapeutic agent doxorubicin (DOX) in neutral and slightly acidic solutions. The incorporation of DOX, SIM, or a combination of them (DOX:SIM) into selected single-component lipid membranes, zwitterionic unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), neutral cholesterol, and negatively charged 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS) was assessed using the Langmuir method. The penetration of neutral lipid monolayers by the codelivery of SIM and DOX was clearly facilitated at pH 5.5, which resembles the pH conditions of the environment of cancer cells. This effect was ascribed to partial neutralization of the DOX positive charge as the result of intermolecular interactions between DOX and SIM. On the other hand, the penetration of the negatively charged DMPS monolayer was most efficient in the case of the positively charged DOX. The efficiency of the drug delivery to the cell membranes was evaluated under in vitro conditions using a panel of cancer-derived cell lines (A172, T98G, and HeLa). MTS and trypan blue exclusion assays were performed, followed by confocal microscopy and spheroid culture tests. Cells were exposed to either free drugs or drugs encapsulated in lipid carriers termed cubosomes. We demonstrated that the viability of cancer cells exposed to DOX was significantly impaired in the presence of SIM, and this phenomenon was greatly magnified when DOX and SIM were coencapsulated in cubosomes. Overall, our results confirmed the utility of the DOX:SIM combination delivery, which enhances the interactions between neutral components of cell membranes and positively charged chemotherapeutic agents.


Assuntos
Antineoplásicos , Inibidores de Hidroximetilglutaril-CoA Redutases , Antineoplásicos/uso terapêutico , Membrana Celular/química , Colesterol/análise , Colesterol/química , Doxorrubicina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/análise , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Serina/análise , Sinvastatina/análise , Sinvastatina/farmacologia , Azul Tripano/análise
13.
J Colloid Interface Sci ; 581(Pt A): 403-416, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32771749

RESUMO

We quantify directly here for the first time the extents of interactions of two different anthracycline drugs with pure and mixed lipid monolayers with respect to the surface pressure and elucidate differences in the resulting interaction mechanisms. The work concerns interactions of doxorubicin (DOx) and idarubicin (IDA) with monolayers of the zwitterionic DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and negatively charged DMPS (1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (sodium salt)) as well as a 7:3 mixture of the two lipids. These drugs are used in current cancer treatments, while the lipid systems were chosen as phosphocholines are the major lipid component of healthy cell membranes, and phosphoserines are the major lipid component that is externalized into the outer leaflet of cancerous cell membranes. It is shown that DOx interacts with DMPS monolayers to a greater extent than with DMPC monolayers by lower limits of a factor of 5 at a surface pressure of 10 mN/m and a factor of 12 at 30 mN/m. With increasing surface pressure, the small amount of drug (~0.3 µmol/m2) bound to DMPC monolayers is excluded from the interface, yet its interaction with DMPS monolayers is enhanced until there is even more drug (~3.2 µmol/m2) than lipid (~2.6 µmol/m2) at the interface. Direct evidence is presented for all systems studied that upon surface area compression lipid is reproducibly expelled from the monolayer, which we infer to be in the form of drug-lipid aggregates, yet the nature of adsorption of material back to the monolayer upon expansion is system-dependent. At 30 mN/m, most relevant to human physiology, the interactions of DOx and IDA are starkly different. For DOx, there is a conformational change in the interfacial layer driven by aggregation, resulting in the formation of lateral domains that have extended layers of drug. For the more lipophilic IDA, there is penetration of the drug into the hydrophobic acyl chain region of the monolayer and no indication of lateral segregation. In addition to the Langmuir technique, these advances were made as a result of direct measurements of the interfacial composition, structure and morphology using two different implementations of neutron reflectometry and Brewster angle microscopy. The results provide new insight into key processes that determine the uptake of drugs such as limited drug penetration through cell membranes by passive diffusion as well as activation of drug removal mechanisms related to multidrug resistance.


Assuntos
Antineoplásicos , Idarubicina , Antibióticos Antineoplásicos , Dimiristoilfosfatidilcolina , Doxorrubicina , Humanos
14.
Biochim Biophys Acta Gen Subj ; 1865(1): 129738, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956751

RESUMO

The interactions of liquid-crystalline nanoparticles based on lipid-like surfactants, glyceryl monooleate, monoolein (GMO) and 1,2,3-trihydroxy-3,7,11,15-tetramethylhexadecane, phytantriol (PT) with selected model lipid membranes prepared by Langmuir technique were compared. Monolayers of DPPC, DMPS and their mixture DPPC:DMPS 87:13 mol% were used as simple models of one leaflet of a cell membrane. The incorporation of cubosomes into the lipid layers spread at the air-water interface was followed by surface-pressure measurements and Brewster angle microscopy. The cubosome - membrane interactions lead to the fluidization of the model membranes but this effect depended on the composition of the model membrane and on the type of cubosomes. The interactions of PT cubosomes with lipid layers, especially DMPS-based monolayer were stronger compared with those of GMO-based nanoparticles. The kinetics of incorporation of cubosomal material into the lipid layer was influenced by the extent of hydration of the polar headgroups of the lipid: faster in the case of smaller, less hydrated polar groups of DMPS than for strongly hydrated uncharged choline of DPPC. The membrane disrupting effect of cubosomes increased at longer times of the lipid membrane exposure to the cubosome solution and at larger carrier concentrations. Langmuir monolayer observations correspond well to results of studies of HeLa cells exposed to cubosomes. The larger toxicity of PT cubosomes was confirmed by MTS. Their ability to disrupt lipid membranes was imaged by confocal microscopy. On the other hand, PT cubosomes easily penetrated cellular membranes and released cargo into various cellular compartments more effectively than GMO-based nanocarriers. Therefore, at low concentrations, they may be further investigated as a promising drug delivery tool.


Assuntos
Membrana Celular/efeitos dos fármacos , Álcoois Graxos/toxicidade , Glicerídeos/toxicidade , Lipídeos de Membrana/metabolismo , Nanopartículas/toxicidade , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Álcoois Graxos/química , Glicerídeos/química , Células HeLa , Humanos , Nanopartículas/química , Tamanho da Partícula
15.
Redox Biol ; 46: 102097, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418599

RESUMO

Lipid nitroalkenes - nitro-fatty acids (NO2-FAs) are formed in vivo via the interaction of reactive nitrogen species with unsaturated fatty acids. The resulting electrophilic NO2-FAs play an important role in redox homeostasis and cellular stress response. This study investigated the physicochemical properties and reactivity of two NO2-FAs: 9/10-nitrooleic acid (1) and its newly prepared 1-monoacyl ester, (E)-2,3-hydroxypropyl 9/10-nitrooctadec-9-enoate (2), both synthesized by a direct radical nitration approach. Compounds 1 and 2 were investigated in an aqueous medium and after incorporation into lipid nanoparticles prepared from 1-monoolein, cubosomes 1@CUB and 2@CUB. Using an electrochemical analysis and LC-MS, free 1 and 2 were found to be unstable under acidic conditions, and their degradation occurred in an aqueous environment within a few minutes or hours. This degradation was associated with the production of the NO radical, as confirmed by fluorescence assay. In contrast, preparations 1@CUB and 2@CUB exhibited a significant increase in the stability of the loaded 1 and 2 up to several days to weeks. In addition to experimental data, density functional theory-based calculation results on the electronic structure and structural variability (open and closed configuration) of 1 and 2 were obtained. Finally, experiments with a human HaCaT keratinocyte cell line demonstrated the ability of 1@CUB and 2@CUB to penetrate through the cytoplasmic membrane and modulate cellular pathways, which was exemplified by the Keap1 protein level monitoring. Free 1 and 2 and the cubosomes prepared from them showed cytotoxic effect on HaCaT cells with IC50 values ranging from 1 to 8 µM after 24 h. The further development of cubosomal preparations with embedded electrophilic NO2-FAs may not only contribute to the field of fundamental research, but also to their application using an optimized lipid delivery vehicle.


Assuntos
Ácidos Graxos , Óxido Nítrico , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Óxido Nítrico/metabolismo , Nitrocompostos
16.
Bioelectrochemistry ; 134: 107516, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32222670

RESUMO

Cubosome nanocarriers are promising biomimetic drug delivery systems used in particular for highly toxic drugs in cases where decreasing unwanted side effects is especially important. The properties of electrode supported lipid bilayer prepared by the combined Langmuir-Blodgett and Langmuir-Schaefer techniques were studied using electrochemical techniques following exposure of the film - covered electrode to a solution containing phytantriol - based cubosomes. The inclusion of the carrier in the model membrane under different experimental conditions was probed and the modifications induced in the lipid organization were for the first time inferred by quantitative analysis of the responses of cyclic voltammetry (CV), AC voltammetry and Electrochemical Impedance Spectroscopy (EIS) as well as blocking assays using a redox probe in the solution. Exposure of a preformed DMPC bilayer to cubosome solution resulted in the improved barrier properties of the film reflecting disintegration of cubosomes and formation of additional phytantriol/Pluronic F-108 polymer layer on the top of the DMPC bilayer. On the other hand, formation of the layer in the presence of cubosomes in the subphase lead to an increased capacitance of the film since penetration of the lipid layers by the cubosomal phytantriol increased the porosity of the film.


Assuntos
Portadores de Fármacos/química , Ouro/química , Bicamadas Lipídicas/química , Nanoestruturas/química , Eletroquímica , Eletrodos , Álcoois Graxos/química , Cristais Líquidos/química , Porosidade
17.
Nanomaterials (Basel) ; 10(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207760

RESUMO

Lipid liquid-crystalline nanoparticles (cubosomes) were used for the first time as a dual-modality drug delivery system for internal radiotherapy combined with chemotherapy. Monoolein (GMO)-based cubosomes were prepared by loading the anticancer drug, doxorubicin and a commonly used radionuclide, low-energy beta (ß-)-emitter, 177Lu. The radionuclide was complexed with a long chain derivative of DOTAGA (DOTAGA-OA). The DOTAGA headgroup of the chelator was exposed to the aqueous channels of the cubosomes, while, concerning OA, the hydrophobic tail was embedded in the nonpolar region of the lipid bilayer matrix, placing the radioactive dopant in a stable manner inside the cubosome. The cubosomes containing doxorubicin and the radionuclide complex increased the cytotoxicity measured by the viability of the treated HeLa cells compared with the effect of single-drug cubosomes containing either the DOX DOTAGA-OA or DOTAGA-OA-177Lu complex. Multifunctional lipidic nanoparticles encapsulating the chemotherapeutic agent together with appropriately complexed (ß-) radionuclide are proposed as a potential strategy for effective local therapy of various cancers.

18.
Anal Bioanal Chem ; 391(5): 1569-78, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18488208

RESUMO

Incorporation of membrane proteins with retained activity in artificial membranes for use in membrane-based sensors has attracted scientists for decades. This review briefly summarises general concepts on relevant cubic phases with and without incorporated proteins and provides some insight into the development of biosensors where bicontinuous cubic phases are used for incorporation of an enzyme. Some new data on impedance characterisation of a supported cubic phase are also shown. An efficient membrane-based electrochemical biosensor requires that the analyte has free access to the immobilised membrane protein and that regeneration of the catalysing enzyme is fast. Long-term stability of the system is also necessary for the biosensor to find applications outside the research laboratory. These basic concepts are discussed in the review along with presentation of those biosensing systems based on cubic phases that are reported in the literature.


Assuntos
Técnicas Biossensoriais/métodos , Lipídeos de Membrana/química , Membranas Artificiais , Técnicas Biossensoriais/instrumentação , Catálise , Eletroquímica , Eletrodos , Enzimas/química , Enzimas/metabolismo , Enzimas Imobilizadas , Cinética , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Micelas , Oxirredução , Espalhamento a Baixo Ângulo , Solubilidade , Solventes/química , Água/química
19.
Biosens Bioelectron ; 100: 437-444, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28961546

RESUMO

The lipidic liquid-crystalline cubic phase (LCP) is a membrane-mimetic material useful for the stabilization and structural analysis of membrane proteins. Here, we focused on the incorporation of the membrane ATP-hydrolysing sodium/potassium transporter Na+/K+-ATPase (NKA) into a monoolein-derived LCP. Small-angle X-ray scattering was employed for the determination of the LCP structure, which was of Pn3m symmetry for all the formulations studied. The fully characterized NKA-LCP material was immobilized onto a glassy carbon electrode, forming a highly stable enzyme electrode and a novel sensing platform. A typical NKA voltammetric signature was monitored via the anodic reaction of tyrosine and tryptophan residues. The in situ enzyme activity evaluation was based on the ability of NKA to transform ATP to ADP and free phosphate, the latter reacting with ammonium molybdate to form the ammonium phosphomolybdate complex under acidic conditions. The square-wave voltammetric detection of phosphomolybdate was performed and complemented with spectrophotometric measurement at 710nm. The anodic voltammetric response, corresponding to the catalytic ATP-hydrolysing function of NKA incorporated into the LCP, was monitored at around + 0.2V vs. Ag/AgCl in the presence or absence of ouabain, a specific NKA inhibitor. NKA incorporated into the LCP retained its ATP-hydrolysing activity for 7 days, while the solubilized protein became practically inactive. The novelty of this work is the first incorporation of NKA into a lipidic cubic phase with consequent enzyme functionality and stability evaluation using voltammetric detection. The application of LCPs could also be important in the further development of new membrane protein electrochemical sensors and enzyme electrodes.


Assuntos
Trifosfato de Adenosina/metabolismo , Técnicas Biossensoriais/métodos , Glicerídeos/química , Cristais Líquidos/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Ensaios Enzimáticos/métodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Hidrólise , Modelos Moleculares , ATPase Trocadora de Sódio-Potássio/química , Suínos
20.
J Colloid Interface Sci ; 531: 98-108, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029032

RESUMO

Specular neutron reflectometry is a powerful technique to resolve interfacial compositions and structures in soft matter. Surprisingly however, even after several decades, a universal modeling approach for the treatment of data of surfactant and phospholipid monolayers at the air/water interface has not yet been established. To address this shortcoming, first a systematic evaluation of the suitability of different models is presented. The result is a comprehensive validation of an optimum model, which is evidently much needed in the field, and which we recommend as a starting point for future data treatment. While its limitations are openly discussed, consequences of failing to take into account various key aspects are critically examined and the systematic errors quantified. On the basis of this physical framework, we go on to show for the first time that neutron reflectometry can be used to quantify directly in situ at the air/water interface the extent of acyl chain compaction of phospholipid monolayers with respect to their phase. The achieved precision of this novel quantification is ∼10%. These advances together enhance significantly the potential for exploitation in future studies data from a broad range of systems including those involving synthetic polymers, proteins, DNA, nanoparticles and drugs.


Assuntos
Fosfolipídeos/química , Tensoativos/química , Ar/análise , Modelos Químicos , Nêutrons , Propriedades de Superfície , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA