Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(41): e2122099119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191206

RESUMO

Viruses pose a great threat to animal and plant health worldwide, with many being dependent on insect vectors for transmission between hosts. While the virus-host arms race has been well established, how viruses and insect vectors adapt to each other remains poorly understood. Begomoviruses comprise the largest genus of plant-infecting DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci. Here, we show that the vector Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway plays an important role in mediating the adaptation between the begomovirus tomato yellow leaf curl virus (TYLCV) and whiteflies. We found that the JAK/STAT pathway in B. tabaci functions as an antiviral mechanism against TYLCV infection in whiteflies as evidenced by the increase in viral DNA and coat protein (CP) levels after inhibiting JAK/STAT signaling. Two STAT-activated effector genes, BtCD109-2 and BtCD109-3, mediate this anti-TYLCV activity. To counteract this vector immunity, TYLCV has evolved strategies that impair the whitefly JAK/STAT pathway. Infection of TYLCV is associated with a reduction of JAK/STAT pathway activity in whiteflies. Moreover, TYLCV CP binds to STAT and blocks its nuclear translocation, thus, abrogating the STAT-dependent transactivation of target genes. We further show that inhibition of the whitefly JAK/STAT pathway facilitates TYLCV transmission but reduces whitefly survival and fecundity, indicating that this JAK/STAT-dependent TYLCV-whitefly interaction plays an important role in keeping a balance between whitefly fitness and TYLCV transmission. This study reveals a mechanism of plant virus-insect vector coadaptation in relation to vector survival and virus transmission.


Assuntos
Begomovirus , Hemípteros , Vírus de Plantas , Solanum lycopersicum , Animais , Antivirais , Begomovirus/genética , DNA Viral , Hemípteros/fisiologia , Janus Quinases/genética , Solanum lycopersicum/genética , Doenças das Plantas , Vírus de Plantas/genética , Fatores de Transcrição STAT/genética , Transdução de Sinais
2.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34494949

RESUMO

Transmission of the crinivirus, lettuce infectious yellows virus (LIYV), is determined by a minor coat protein (CPm)-mediated virion retention mechanism located in the foregut of its whitefly vector. To better understand the functions of LIYV CPm, chimeric CPm mutants engineered with different lengths of the LIYV CPm amino acid sequence and that of the crinivirus, lettuce chlorosis virus (LCV), were constructed based on bioinformatics and sequence alignment data. The 485 amino acid-long chimeric CPm of LIYV mutant, CPmP-1, contains 60 % (from position 3 to 294) of LCV CPm amino acids. The chimeric CPm of mutants CPmP-2, CPmP-3 and CPmP-4 contains 46 (position 3 to 208), 51 (position 3 to 238) and 41 % (position 261 to 442) of LCV CPm amino acids, respectively. All four mutants moved systemically, expressed the chimeric CPm and formed virus particles. However, following acquisition feeding of the virus preparations, only CPmP-1 was retained in the foreguts of a significant number of vectors and transmitted. In immuno-gold labelling transmission electron microscopy (IGL-TEM) analysis, CPmP-1 particles were distinctly labelled by antibodies directed against the LCV but not LIYV CPm. In contrast, CPmP-4 particles were not labelled by antibodies directed against the LCV or LIYV CPm, while CPmP-2 and -3 particles were weakly labelled by anti-LIYV CPm but not anti-LCV CPm antibodies. The unique antibody recognition and binding pattern of CPmP-1 was also displayed in the foreguts of whitefly vectors that fed on CPmP-1 virions. These results are consistent with the hypothesis that the chimeric CPm of CPmP-1 is incorporated into functional virions, with the LCV CPm region being potentially exposed on the surface and accessible to anti-LCV CPm antibodies.


Assuntos
Proteínas do Capsídeo/metabolismo , Crinivirus/fisiologia , Hemípteros/virologia , Insetos Vetores/virologia , Nicotiana/virologia , Doenças das Plantas/virologia , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Crinivirus/genética , Sistema Digestório/virologia , Engenharia Genética , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/metabolismo , Mutação , Plantas Geneticamente Modificadas/virologia , Vírion/fisiologia
3.
Clin Otolaryngol ; 46(5): 919-934, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34053179

RESUMO

BACKGROUND: Novel cancer immunotherapy seeks to harness the body's own immune system and tip the balance in favour of antitumour activity. The intracellular enzyme indoleamine 2,3-dioxygenase (IDO) is a critical regulator of the tumour microenvironment (TME) via tryptophan metabolism. The potential immunotherapeutic role of IDO in head and neck squamous cell carcinoma (HNSCC) requires further exploration. We aim to assess the evidence on IDO in HNSCC. METHODS: A systematic review of literature and clinical trials databases. RESULTS: We included 40 studies: seven involved cell lines: eight assessed tumour immunohistochemistry: ten measured IDO gene transcription: 15 reported on clinical trials. Increased cell line IDO expression was postulated to adversely affect tumour metabolism and apoptosis. Immunohistochemical IDO expression correlated with worse survival. Gene transcription studies associated IDO with positive PD-L1 and human papillomavirus (HPV) status. Phase I/II clinical trials showed (a) overall response (34%-55%) and disease control rates (62%-70%) for IDO1 inhibitor in combination with a PD-1 inhibitor, (b) similar safety profiles when both are used in combination therapy compared to each as monotherapies and (c) IDO gene expression as a predictive biomarker for response to PD-L1 therapy. CONCLUSIONS: IDO expression is increased in the TME of HNSCC, which correlates with poor prognosis. However, the exact mechanism of IDO-driven immune modulation in the TME is an enigma. Future translational studies should map IDO activity during HNSCC treatment and elucidate its precise role in the TME, such research will underpin the development of clinical trials establishing the efficacy of IDO inhibitors in HNSCC.


Assuntos
Imunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/enzimologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Humanos , Microambiente Tumoral
4.
J Wound Ostomy Continence Nurs ; 47(1): 32-38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929442

RESUMO

PURPOSE: The aim of this study was to evaluate both surgical and patient-centered stomal complications after stoma formation, with emphasis on underreported symptoms and complaints. DESIGN: Prospective, single-group study. SUBJECTS AND SETTING: Patients undergoing emergency and elective ostomy surgery between January 1, 1999, and June 1, 2016, in 3 acute care hospitals were followed up by stoma care nurse specialists in NHS Lanarkshire, Scotland. METHODS: Data were collected on surgery type (emergency or elective), stoma type (ileostomy or colostomy), stoma-related complications including surgical complications (stenosis, retractions, hernia, and prolapse) and so-called "patient-centered" complications (skin changes, odor, leakage, soiling, and nighttime emptying) at 5 time points: 10 days, 3 months, 6 months, 1 year, and 2 years postoperatively. For this study, we report comparisons at 10 days and 2 years, using frequencies reported as percentages. RESULTS: Data from 3509 consecutive stoma surgeries were analyzed. Complication rates were similar in both emergency and elective cases. The nighttime symptoms of leakage and soiling were significantly greater in the ileostomy group and worsened over the 2-year period. The parastomal hernia rate was 34.5% at 2 years, a finding more common in the colostomy group (46.4% vs 20.1%, P < .001). However, the rate of clinically significant hernia was similar when comparing the colostomy group with the ileostomy group (3.6% vs 2.2%, P = .38). Emergency stoma surgeries (40.2%) were preoperatively sited compared with 95.9% of elective cases. CONCLUSIONS: Our prospective multicenter study demonstrated that stoma-related complications are similar irrespective of whether the stoma was formed via an elective surgery or emergency surgery. Nighttime symptoms of leakage, soiling, and emptying were high post-stoma formation, particularly in the ileostomy group, and worsened over the 2-year period. Findings from our study highlight the presence and persistence of complications. We believe our work highlights the importance of having frequent discussions with patients about making decisions about approaches to reduce complications to enhance patient outcomes.


Assuntos
Estomas Cirúrgicos/efeitos adversos , Adulto , Idoso , Estudos de Coortes , Procedimentos Cirúrgicos do Sistema Digestório/efeitos adversos , Procedimentos Cirúrgicos do Sistema Digestório/métodos , Procedimentos Cirúrgicos do Sistema Digestório/estatística & dados numéricos , Feminino , Hospitais/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/classificação , Complicações Pós-Operatórias/epidemiologia , Estudos Prospectivos , Escócia/epidemiologia
5.
Virol J ; 15(1): 141, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30219073

RESUMO

BACKGROUND: The non-translated regions at the genome ends of RNA viruses serve diverse functions and can exhibit various levels of nucleotide (nt) heterogeneity. However, the extent of nt heterogeneity at the extreme termini of Citrus tristeza virus (CTV) genomes has not been comprehensively documented. This study aimed to characterize two widely prevalent CTV genotypes, T36-CA and T30-CA, from California that have not been sequenced or analyzed substantially. The information obtained will be used in our ongoing effort to construct the infectious complementary (c) DNA clones of these viruses. METHODS: The terminal nts of the viral genomes were identified by sequencing cDNA clones of the plus- and/or minus-strand of the viral double-stranded (ds) RNAs generated using 5' and 3' rapid amplification of cDNA ends. Cloned cDNAs corresponding to the complete genome sequences of both viruses were generated using reverse transcription-polymerase chain reactions, sequenced, and subjected to phylogenetic analysis. RESULTS: Among the predominant terminal nts identified, some were identical to the consensus sequences in GenBank, while others were different or unique. Remarkably, one of the predominant 5' nt variants of T36-CA contained the consensus nts "AATTTCAAA" in which a highly conserved cytidylate, seen in all other full-length T36 sequences, was absent. As expected, but never systematically verified before, unique variants with additional nt (s) incorporated upstream of the 5' terminal consensus nts of T36-CA and T30-CA were also identified. In contrast to the extreme 5' terminal nts, those at the extreme 3' termini of T36-CA and T30-CA were more conserved compared to the reference sequences, although nt variants were also found. Notably, an additional thymidylate at the extreme 3' end was identified in many T36-CA sequences. Finally, based on pairwise comparisons and phylogenetic analysis with multiple reference sequences, the complete sequences of both viruses were found to be highly conserved with those of the respective genotypes. CONCLUSIONS: The extreme terminal nts in the T36-CA and T30-CA genomes were identified, revealing new insights on the heterogeneity of these CTV genomic regions. T36-CA and T30-CA were the first and the second genotypes, respectively, of CTV originating from California to be completely sequenced and analyzed.


Assuntos
Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Closterovirus/genética , Variação Genética , Genoma Viral , RNA Viral/genética , California , Closterovirus/classificação , Closterovirus/isolamento & purificação , Genótipo , Análise de Sequência de DNA
6.
Phytopathology ; 106(6): 653-62, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26828232

RESUMO

RNA silencing functions as an antivirus defense strategy in plants, one that plant viruses counter by producing viral suppressors of RNA silencing (VSRs). VSRs have been identified in three members of the genus Crinivirus but they do not all share identical suppression mechanisms. Here, we used Agrobacterium co-infiltration assays to investigate the suppressor activity of proteins encoded by Lettuce chlorosis virus (LCV). Of 7 LCV proteins (1b, P23, HSP70 homolog, P60, CP, CPm, and P27) tested for the suppression of silencing of green fluorescent protein (GFP) expression in wild-type Nicotiana benthamiana plants, only P23 suppressed the onset of local silencing. Small-interfering (si)RNA accumulation was reduced in leaves co-infiltrated with P23, suggesting that P23 inhibited the accumulation or enhanced the degradation of siRNA. P23 also inhibited the cell-to-cell and systemic movement of RNA silencing in GFP-expressing transgenic N. benthamiana plants. Expression of P23 via agroinfiltration of N. benthamiana leaves induced local necrosis that increased in severity at elevated temperatures, a novelty given that a direct temperature effect on necrosis severity has not been reported for the other crinivirus VSRs. These results further affirm the sophistication of crinivirus VSRs in mediating the evasion of host's antiviral defenses and in symptom modulation.


Assuntos
Temperatura Alta , Lactuca/virologia , Doenças das Plantas/virologia , Vírus de Plantas , Interferência de RNA , Necrose , Folhas de Planta/virologia , RNA de Cadeia Dupla
7.
Proc Natl Acad Sci U S A ; 108(40): 16777-82, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21930903

RESUMO

Numerous pathogens of humans, animals, and plants are transmitted by specific arthropod vectors. However, understanding the mechanisms governing these pathogen-vector interactions is hampered, in part, by the lack of easy-to-use analytical tools. We investigated whitefly transmission of Lettuce infectious yellows virus (LIYV) by using a unique immunofluorescent localization approach in which we fed virions or recombinant virus capsid components to whiteflies, followed by feeding them antibodies to the virions or capsid components, respectively. Fluorescent signals, indicating the retention of virions, were localized in the anterior foregut or cibarium of a whitefly vector biotype but not within those of a whitefly nonvector biotype. Retention of virions in these locations strongly corresponded with the whitefly vector transmission of LIYV. When four recombinant LIYV capsid components were individually fed to whitefly vectors, significantly more whiteflies retained the recombinant minor coat protein (CPm). As demonstrated previously and in the present study, whitefly vectors failed to transmit virions preincubated with anti-CPm antibodies but transmitted virions preincubated with antibodies recognizing the major coat protein (CP). Correspondingly, the number of insects that specifically retained virions preincubated with anti-CPm antibodies were significantly reduced compared with those that specifically retained virions preincubated with anti-CP antibodies. Notably, a transmission-defective CPm mutant was deficient in specific virion retention, whereas the CPm-restored virus showed WT levels of specific virion retention and transmission. These data provide strong evidence that transmission of LIYV is determined by a CPm-mediated virion retention mechanism in the anterior foregut or cibarium of whitefly vectors.


Assuntos
Proteínas do Capsídeo/metabolismo , Crinivirus/metabolismo , Transmissão de Doença Infecciosa , Imunofluorescência/métodos , Hemípteros/virologia , Insetos Vetores/virologia , Vírion/metabolismo , Animais , Anticorpos Antivirais/metabolismo , Crinivirus/genética , DNA Complementar/genética , Ensaio de Imunoadsorção Enzimática , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Virol ; 84(23): 12165-73, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861267

RESUMO

The Lettuce infectious yellows virus (LIYV) RNA 2 mutant p1-5b was previously isolated from Bemisia tabaci-transmitted virus maintained in Chenopodium murale plants. p1-5b RNA 2 contains a single-nucleotide deletion in the minor coat protein (CPm) open reading frame (ORF) that is predicted to result in a frameshift and premature termination of the protein. Using the recently developed agroinoculation system for LIYV, we tested RNA 2 containing the p1-5b CPm mutant genotype (agro-pR6-5b) in Nicotiana benthamiana plants. We showed that plant infection triggered by agro-pR6-5b spread systemically and resulted in the formation of virions similar to those produced in p1-5b-inoculated protoplasts. However, virions derived from these mutant CPm genotypes were not transmitted by whiteflies, even though virion concentrations were above the typical transmission thresholds. In contrast, and as demonstrated for the first time, an engineered restoration mutant (agro-pR6-5bM1) was capable of both systemic movement in plants and whitefly transmission. These results provide strong molecular evidence that the full-length LIYV-encoded CPm is dispensable for systemic plant movement but is required for whitefly transmission.


Assuntos
Proteínas do Capsídeo/genética , Crinivirus/genética , Hemípteros/virologia , Insetos Vetores/virologia , Nicotiana/virologia , Doenças das Plantas/virologia , Vírion/fisiologia , Animais , Sequência de Bases , Primers do DNA/genética , Immunoblotting , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutagênese , Mutação/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Vírion/genética , Vírion/ultraestrutura
9.
Viruses ; 13(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34452445

RESUMO

Lettuce infectious yellows virus is the first crinivirus for which the retention of purified virions ingested into the whitefly (Bemisia tabaci New World (NW)) vector's foregut, has been demonstrated to be a requisite for successful virus transmission. This key finding supports the hypothesis that the determinant of foregut retention and transmission is present on the virion itself. However, whether this is also true for other criniviruses has not been established. Here, we provide evidence that lettuce chlorosis virus (LCV) acquired from plants is retained in the foreguts of both the B. tabaci NW and Middle East-Asia Minor 1 (MEAM1) vector species and transmitted upon inoculation feeding. An association between foregut retention and transmission by NW vectors is also observed following the acquisition and inoculation feeding of LCV virions purified using a standard procedure involving 2% or 4% (v/v) Triton™ X-100 (TX-100). However, while virions purified with 2% or 4% TX-100 are also retained in the foreguts of MEAM1 vectors, transmission is observed with the 4% TX-100-purified virions or when more vectors are used for acquisition and inoculation feeding. These results suggest that an intrinsic difference exists between NW and MEAM1 vectors in their interactions with, and transmission of, LCV virions.


Assuntos
Crinivirus/fisiologia , Sistema Digestório/virologia , Hemípteros/fisiologia , Hemípteros/virologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Animais , Sistema Digestório/anatomia & histologia , Doenças das Plantas/virologia , Vírion/fisiologia
10.
Mol Plant Pathol ; 22(1): 64-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33118689

RESUMO

Complementary (c)DNA clones corresponding to the full-length genome of T36CA (a Californian isolate of Citrus tristeza virus with the T36 genotype), which shares 99.1% identity with that of T36FL (a T36 isolate from Florida), were made into a vector system to express the green fluorescent protein (GFP). Agroinfiltration of two prototype T36CA-based vectors (pT36CA) to Nicotiana benthamiana plants resulted in local but not systemic GFP expression/viral infection. This contrasted with agroinfiltration of the T36FL-based vector (pT36FL), which resulted in both local and systemic GFP expression/viral infection. A prototype T36CA systemically infected RNA silencing-defective N. benthamiana lines, demonstrating that a genetic basis for its defective systemic infection was RNA silencing. We evaluated the in planta bioactivity of chimeric pT36CA-pT36FL constructs and the results suggested that nucleotide variants in several open reading frames of the prototype T36CA could be responsible for its defective systemic infection. A single amino acid substitution in each of two silencing suppressors, p20 (S107G) and p25 (G36D), of prototype T36CA facilitated its systemic infectivity in N. benthamiana (albeit with reduced titre relative to that of T36FL) but not in Citrus macrophylla plants. Enhanced virus accumulation and, remarkably, robust systemic infection of T36CA in N. benthamiana and C. macrophylla plants, respectively, required two additional amino acid substitutions engineered in p65 (N118S and S158L), a putative closterovirus movement protein. The availability of pT36CA provides a unique opportunity for comparative analysis to identify viral coding and noncoding nucleotides or sequences involved in functions that are vital for in planta infection.


Assuntos
Closterovirus/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Proteínas Virais/metabolismo , Closterovirus/fisiologia , Interações Hospedeiro-Patógeno , Interferência de RNA , Nicotiana/genética , Proteínas Virais/genética
11.
PLoS One ; 14(3): e0213087, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840696

RESUMO

The split GFP technique is based on the auto-assembly of GFP when two polypeptides-GFP1-10 (residues 1-214; the detector) and GFP11 (residues 215-230; the tag)-both non-fluorescing on their own, associate spontaneously to form a fluorescent molecule. We evaluated this technique for its efficacy in contributing to the characterization of Cauliflower mosaic virus (CaMV) infection. A recombinant CaMV with GFP11 fused to the viral protein P6 (a key player in CaMV infection and major constituent of viral factory inclusions that arise during infection) was constructed and used to inoculate transgenic Arabidopsis thaliana expressing GFP1-10. The mutant virus (CaMV11P6) was infectious, aphid-transmissible and the insertion was stable over many passages. Symptoms on infected plants were delayed and milder. Viral protein accumulation, especially of recombinant 11P6, was greatly decreased, impeding its detection early in infection. Nonetheless, spread of infection from the inoculated leaf to other leaves was followed by whole plant imaging. Infected cells displayed in real time confocal laser scanning microscopy fluorescence in wild type-looking virus factories. Thus, it allowed for the first time to track a CaMV protein in vivo in the context of an authentic infection. 11P6 was immunoprecipitated with anti-GFP nanobodies, presenting a new application for the split GFP system in protein-protein interaction assays and proteomics. Taken together, split GFP can be an attractive alternative to using the entire GFP for protein tagging.


Assuntos
Arabidopsis/virologia , Caulimovirus/patogenicidade , Proteínas de Fluorescência Verde/genética , Proteínas Virais/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Caulimovirus/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Mutagênese Sítio-Dirigida , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/metabolismo
12.
Annu Rev Phytopathol ; 44: 183-212, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16602948

RESUMO

Most plant viruses are absolutely dependent on a vector for plant-to-plant spread. Although a number of different types of organisms are vectors for different plant viruses, phloem-feeding Hemipterans are the most common and transmit the great majority of plant viruses. The complex and specific interactions between Hemipteran vectors and the viruses they transmit have been studied intensely, and two general strategies, the capsid and helper strategies, are recognized. Both strategies are found for plant viruses that are transmitted by aphids in a nonpersistent manner. Evidence suggests that these strategies are found also for viruses transmitted in a semipersistent manner. Recent applications of molecular and cell biology techniques have helped to elucidate the mechanisms underlying the vector transmission of several plant viruses. This review examines the fundamental contributions and recent developments in this area.


Assuntos
Afídeos/virologia , Insetos Vetores/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Animais
13.
Insect Sci ; 24(6): 929-946, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28426155

RESUMO

By serving as vectors of transmission, insects play a key role in the infection cycle of many plant viruses. Viruses use sophisticated transmission strategies to overcome the spatial barrier separating plants and the impediment imposed by the plant cell wall. Interactions among insect vectors, viruses, and host plants mediate transmission by integrating all organizational levels, from molecules to populations. Best-examined on the molecular scale are two basic transmission modes wherein virus-vector interactions have been well characterized. Whereas association of virus particles with specific sites in the vector's mouthparts or in alimentary tract regions immediately posterior to them is required for noncirculative transmission, the cycle of particles through the vector body is necessary for circulative transmission. Virus transmission is also determined by interactions that are associated with changes in vector feeding behaviors and with alterations in plant host's morphology and/or metabolism that favor the attraction or deterrence of vectors. A recent concept in virus-host-vector interactions proposes that when vectors land on infected plants, vector elicitors and effectors "inform" the plants of the confluence of interacting entities and trigger signaling pathways and plant defenses. Simultaneously, the plant responses may also influence virus acquisition and inoculation by vectors. Overall, a picture is emerging where transmission depends on multilayered virus-vector-host interactions that define the route of a virus through the vector, and on the manipulation of the host and the vector. These interactions guarantee virus propagation until one or more of the interactants undergo changes through evolution or are halted by environmental interventions.


Assuntos
Insetos Vetores/virologia , Insetos/fisiologia , Doenças das Plantas/virologia , Vírus de Plantas , Plantas/virologia , Animais , Comportamento Animal , Plantas/metabolismo
14.
Insect Sci ; 24(6): 1079-1092, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28677320

RESUMO

Transmission of plant viruses by phytophagous hemipteran insects encompasses complex interactions underlying a continuum of processes involved in virus acquisition, retention and inoculation combined with vector feeding behavior. Here, we investigated the effects of dietary pH on whitefly (Bemisia tabaci) feeding behavior and release of Lettuce infectious yellows virus (LIYV) virions retained in the vector's foregut. Electrical penetration graph analysis revealed that variables associated with whitefly probing and ingestion did not differ significantly in pH (4, 7.4, and 9) adjusted artificial diets. To investigate virus retention and release, whiteflies allowed to acquire LIYV virions in a pH 7.4 artificial diet were fed pH 4, 7.4, or 9 virion-free artificial (clearing) diets. Immunofluorescent localization analyses indicated that virions remained bound to the foreguts of approximately 20%-24% of vectors after they fed on each of the 3 pH-adjusted clearing diets. When RNA preparations from the clearing diets were analyzed by reverse transcription (RT) nested-PCR and, in some cases, real-time qPCR, successful amplification of LIYV-specific sequence was infrequent but consistently repeatable for the pH 7.4 diet but never observed for the pH 4 and 9 diets, suggesting a weak pH-dependent effect for virion release. Viruliferous vectors that fed on each of the 3 pH-adjusted clearing diets transmitted LIYV to virus-free plants. These results suggest that changes in pH values alone in artificial diet do not result in observable changes in whitefly feeding behaviors, an observation that marks a first in the feeding of artificial diet by whitefly vectors; and that there is a potential causal and contingent relationship between the pH in artificial diet and the release/inoculation of foregut bound virions.


Assuntos
Crinivirus/fisiologia , Hemípteros/fisiologia , Insetos Vetores/fisiologia , Animais , Dieta , Comportamento Alimentar , Feminino , Hemípteros/virologia , Concentração de Íons de Hidrogênio , Insetos Vetores/virologia , Masculino
15.
Sci Rep ; 6: 34482, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694962

RESUMO

The terminal ends in the genome of RNA viruses contain features that regulate viral replication and/or translation. We have identified a Y-shaped structure (YSS) in the 3' terminal regions of the bipartite genome of Lettuce chlorosis virus (LCV), a member in the genus Crinivirus (family Closteroviridae). The YSS is the first in this family of viruses to be determined using Selective 2'-Hydroxyl Acylation Analyzed by Primer Extension (SHAPE). Using luciferase constructs/replicons, in vivo and in vitro assays showed that the 5' and YSS-containing 3' terminal regions of LCV RNA1 supported translation activity. In contrast, similar regions from LCV RNA2, including those upstream of the YSS, did not. LCV RNA2 mutants with nucleotide deletions or replacements that affected the YSS were replication deficient. In addition, the YSS of LCV RNA1 and RNA2 were interchangeable without affecting viral RNA synthesis. Translation and significant replication were observed for specific LCV RNA2 replicons only in the presence of LCV RNA1, but both processes were impaired when the YSS and/or its upstream region were incomplete or altered. These results are evidence that the YSS is essential to the viral replication machinery, and contributes to replication enhancement and replication-associated translation activity in the RNA2 replicons.


Assuntos
Crinivirus/fisiologia , Nicotiana/virologia , Células Vegetais/virologia , Protoplastos/virologia , RNA Viral/biossíntese , Replicação Viral/fisiologia , Mutação , Células Vegetais/metabolismo , Protoplastos/citologia , Protoplastos/metabolismo , RNA Viral/genética , Nicotiana/citologia , Nicotiana/metabolismo
16.
Curr Opin Virol ; 15: 48-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318639

RESUMO

The non-circulative, semi-persistent (NCSP) mode of insect vector-mediated plant virus transmission is shaped by biological, molecular and mechanical interactions that take place across a continuum of processes involved in virion acquisition, retention and inoculation. Our understanding of the interactive roles of virus, insect vector, and plant associated with NCSP transmission is still evolving. Mechanisms exist that determine where and how virion acquisition (from the plant) and retention (in the insect vector) are achieved, with both processes being mediated by strategies involving viral capsid proteins, in some cases aided by non-capsid proteins. By contrast, mechanisms underlying virion inoculation (to the plant) remain poorly understood. Here, we review the established paradigms as well as fresh perspectives on the mechanisms of NCSP transmission.


Assuntos
Insetos Vetores/virologia , Vírus de Plantas/fisiologia , Plantas/virologia , Animais , Proteínas do Capsídeo/metabolismo , Flores/virologia , Interações Hospedeiro-Parasita , Doenças das Plantas/virologia , Vírion/fisiologia
17.
Front Microbiol ; 4: 77, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577009

RESUMO

Successful vector-mediated plant virus transmission entails an intricate but poorly understood interplay of interactions among virus, vector, and plant. The complexity of interactions requires continually improving/evaluating tools and methods for investigating the determinants that are central to mediating virus transmission. A recent study using an organic fluorophore (Alexa Fluor)-based immunofluorescent localization assay demonstrated that specific retention of Lettuce infectious yellows virus (LIYV) virions in the anterior foregut or cibarium of its whitefly vector is required for virus transmission. Continuous exposure of organic fluorophore to high excitation light intensity can result in diminished or loss of signals, potentially confounding the identification of important interactions associated with virus transmission. This limitation can be circumvented by incorporation of photostable fluorescent nanocrystals, such as quantum dots (QDs), into the assay. We have developed and evaluated a QD-immunofluorescent labeling method for the in vitro and in situ localization of LIYV virions based on the recognition specificity of streptavidin-conjugated QD605 (S-QD605) for biotin-conjugated anti-LIYV IgG (B-αIgG). IgG biotinylation was verified in a blot overlay assay by probing SDS-PAGE separated B-αIgG with S-QD605. Immunoblot analyses of LIYV using B-αIgG and S-QD605 resulted in a virus detection limit comparable to that of DAS-ELISA. In membrane feeding experiments, QD signals were observed in the anterior foregut or cibarium of virion-fed whitefly vectors but absent in those of virion-fed whitefly non-vectors. Specific virion retention in whitefly vectors corresponded with successful virus transmission. A fluorescence photobleaching assay of viruliferous whiteflies fed B-αIgG and S-QD605 vs. those fed anti-LIYV IgG and Alexa Fluor 488-conjugated IgG revealed that QD signal was stable and deteriorated approx. seven- to eight-fold slower than that of Alexa Fluor.

18.
Virus Res ; 169(1): 310-5, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22926259

RESUMO

Lettuce chlorosis virus (LCV) is a single stranded, positive strand RNA virus that is solely transmitted by specific whitefly vectors (Bemisia tabaci biotypes A and B) but not by mechanical leaf-rub inoculation. The roles of viral encoded proteins involved in the infection cycle of LCV have not yet been characterized due to the lack of reverse genetic tools. We present here a report of the successful development of an Agrobacterium-mediated inoculation system for the cloned cDNA constructs of LCV. The cDNAs of both LCV RNAs 1 and 2 were engineered into binary vectors in which the expression of LCV RNAs was regulated under a Cauliflower mosaic virus (CaMV) 35S promoter. In addition, by engineering the sequence elements of the Hepatitis delta virus ribozyme and the nopaline synthase 3' untranslated region immediately downstream of the last nucleotide of LCV RNAs 1 and 2 in the binary vector constructs, the in planta produced LCV transcripts were expected to bear authentic 3' termini. Both constructs were transformed into Agrobacterium tumefaciens cells and infiltrated in Nicotiana benthamiana plants. Three to four weeks post-agroinoculation, the N. benthamiana plants developed typical interveinal chlorosis and LCV infection was detected in the systemic leaves by reverse transcription-PCR. Virions purified from the LCV-infected N. benthamiana plants were flexuous rod-shaped and were transmissible by both B. tabaci biotypes A and B following membrane feeding. These results support the conclusion that Agrobacterium-mediated inoculation of LCV binary vectors in N. benthamiana plants results in LCV infection and the production of biologically active, whitefly transmissible virions. This system represents an important tool for use with reverse genetics designed for the study of LCV gene functions.


Assuntos
Crinivirus/patogenicidade , DNA Complementar/genética , DNA Viral/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Transformação Genética , Agrobacterium tumefaciens/genética , Animais , Caulimovirus/genética , Crinivirus/genética , Hemípteros/virologia , Vírus Delta da Hepatite/genética , Regiões Promotoras Genéticas , RNA Viral/biossíntese , Genética Reversa/métodos , Transcrição Gênica
19.
Virus Res ; 156(1-2): 64-71, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21211541

RESUMO

Viruses in the genus Crinivirus infect diverse plant species and are transmitted by specific whitefly vectors, but the basis for vector specific transmission remains poorly understood. Here, we demonstrated that purified virion preparations of Lettuce chlorosis virus (LCV) contained filamentous particles that were consistently transmitted to plants by whiteflies (Bemisia tabaci biotypes A and B) following membrane feeding, suggesting that the preparations contained biologically active virions with all the components essential for specific vector transmission. We also demonstrated in sequential membrane feeding experiments that B. tabaci biotype A pre-fed with high concentrations of Lettuce infectious yellows virus (LIYV) virions followed by decreasing concentrations of LCV virions either abolished or interfered with the transmission of the latter. However, in the reverse treatment, an abolishment/interference in transmission of LIYV was not observed. These results suggest that both viruses share a common transmission pathway in B. tabaci biotype A, and factors other than virion quality and quantity may additionally influence their transmission. To begin investigating the viral determinants that are involved in mediating the whitefly transmission of LCV, virions were analyzed by Western immunoblotting. Our results showed that virions were positively identified by antisera produced against three E. coli expressed recombinant LCV capsid proteins--the major coat protein [CP], minor CP [CPm], and P60.


Assuntos
Crinivirus/fisiologia , Hemípteros/virologia , Lactuca/virologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Crinivirus/genética , Crinivirus/metabolismo , Insetos Vetores/virologia , Vírion/metabolismo
20.
Virology ; 420(2): 89-97, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21945036

RESUMO

Cloned infectious complementary DNAs of the bipartite genomic RNAs of Lettuce chlorosis virus (LCV) were constructed. Inoculation of tobacco protoplasts with the in vitro produced RNAs 1 and 2 transcripts, or with RNA 1 transcript alone, resulted in viral replication accompanied by the production of novel LCV RNA 1-derived RNAs. They included the abundantly accumulating LM-LCVR1-1 (~0.38 kb) and LM-LCVR1-2 (~0.3 kb), and the lowly accumulating HM-LCVR1-1 (~8.0 kb) and HM-LCVR1-2 (~6.6 kb), all of which reacted with riboprobes specific to the 5' end of RNA 1 in Northern blot analysis. LM-LCVR1-1 and HM-LCVR1-2 accumulated as positive-stranded RNAs that lacked complementary negative strands, while HM-LCVR1-1 and LM-LCVR1-2 accumulated in both polarities. Additional Northern blot, reverse transcription-polymerase chain reaction, cloning, and sequence analyses revealed LM-LCVR1-2 to be an authentic RNA 1-derived defective (D)RNA, suggesting that its synthesis and maintenance are supported in trans by an RNA 1 encoded replication machinery.


Assuntos
Crinivirus/genética , Crinivirus/fisiologia , RNA Viral/biossíntese , RNA Viral/genética , Replicação Viral/genética , Sequência de Bases , Northern Blotting , Clonagem Molecular , DNA Complementar/genética , Genoma Viral , Lactuca/virologia , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Nicotiana/virologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA