Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(5): 2814-2822, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38598701

RESUMO

Peptide-based hydrogels have gained considerable attention as a compelling platform for various biomedical applications in recent years. Their attractiveness stems from their ability to seamlessly integrate diverse properties, such as biocompatibility, biodegradability, easily adjustable hydrophilicity/hydrophobicity, and other functionalities. However, a significant drawback is that most of the functional self-assembling peptides cannot form robust hydrogels suitable for biological applications. In this study, we present the synthesis of novel peptide-PEG conjugates and explore their comprehensive hydrogel properties. The hydrogel comprises double networks, with the first network formed through the self-assembly of peptides to create a ß-sheet secondary structure. The second network is established through covalent bond formation via N-hydroxysuccinimide chemistry between peptides and a 4-arm PEG to form a covalently linked network. Importantly, our findings reveal that this hydrogel formation method can be applied to other peptides containing lysine-rich sequences. Upon encapsulation of the hydrogel with antimicrobial peptides, the hydrogel retained high bacterial killing efficiency while showing minimum cytotoxicity toward mammalian cells. We hope that this method opens new avenues for the development of a novel class of peptide-polymer hydrogel materials with enhanced performance in biomedical contexts, particularly in reducing the potential for infection in applications of tissue regeneration and drug delivery.


Assuntos
Tecnologia Biomédica , Hidrogéis , Peptídeos , Polietilenoglicóis , Hidrogéis/síntese química , Hidrogéis/farmacologia , Hidrogéis/normas , Hidrogéis/toxicidade , Peptídeos/química , Polietilenoglicóis/química , Tecnologia Biomédica/métodos , Humanos , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Reologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
2.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686076

RESUMO

Bacterial infection has traditionally been treated with antibiotics, but their overuse is leading to the development of antibiotic resistance. This may be mitigated by alternative approaches to prevent or treat bacterial infections without utilization of antibiotics. Among the alternatives is the use of photo-responsive antimicrobial nanoparticles and/or nanocomposites, which present unique properties activated by light. In this study, we explored the combined use of titanium oxide and polydopamine to create nanoparticles with photocatalytic and photothermal antibacterial properties triggered by visible or near-infrared light. Furthermore, as a proof-of-concept, these photo-responsive nanoparticles were combined with mussel-inspired catechol-modified hyaluronic acid hydrogels to form novel light-driven antibacterial nanocomposites. The materials were challenged with models of Gram-negative and Gram-positive bacteria. For visible light, the average percentage killed (PK) was 94.6 for E. coli and 92.3 for S. aureus. For near-infrared light, PK for E. coli reported 52.8 and 99.2 for S. aureus. These results confirm the exciting potential of these nanocomposites to prevent the development of antibiotic resistance and also to open the door for further studies to optimize their composition in order to increase their bactericidal efficacy for biomedical applications.


Assuntos
Anti-Infecciosos , Nanocompostos , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Raios Infravermelhos
3.
Pharm Res ; 39(11): 2729-2743, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35764754

RESUMO

PURPOSE: The development of two novel pH-only and pH- and thermo-responsive theranostic nanoparticle (NP) formulations to deliver an anticancer drug and track the accumulation and therapeutic efficacy of the formulations through inherent fluorescence. METHODS: A pH-responsive formulation was synthesized from biodegradable photoluminescent polymer (BPLP) and sodium bicarbonate (SBC) via an emulsion technique, while a thermoresponsive BPLP copolymer (TFP) and SBC were used to synthesize a dual-stimuli responsive formulation via free radical co-polymerization. Cisplatin was employed as a model drug and encapsulated during synthesis. Size, surface charge, morphology, pH-dependent fluorescence, lower critical solution temperature (LCST; TFP NPs only), cytocompatibility and in vitro uptake, drug release kinetics and anticancer efficacy were assessed. RESULTS: While all BPLP-SBC and TFP-SBC combinations produced spherical nanoparticles of a size between 200-300 nm, optimal polymer-SBC ratios were selected for further study. Of these, the optimal BPLP-SBC formulation was found to be cytocompatible against primary Type-1 alveolar epithelial cells (AT1) up to 100 µg/mL, and demonstrated sustained drug release over 14 days, dose-dependent uptake, and marked pH-dependent A549 cancer cell killing (72 vs. 24% cell viability, at pH 7.4 vs. 6.0). The optimal TFP-SBC formulation showed excellent cytocompatibility against AT1 cells up to 500 µg/mL, sustained release characteristics, dose-dependent uptake, pH-dependent (78% at pH 7.4 vs. 64% at pH 6.0 at 37°C) and marked temperature-dependent A549 cancer cell killing (64% at 37°C vs. 37% viability at pH 6.0, 41°C). CONCLUSIONS: In all, both formulations hold promise as inherently fluorescent, stimuli-responsive theranostic platforms for passively targeted anti-cancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Liberação Controlada de Fármacos , Polímeros/uso terapêutico , Concentração de Íons de Hidrogênio , Portadores de Fármacos
4.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293521

RESUMO

Angiogenesis inhibitor drugs have been explored as important pharmacological agents for cancer therapy, including hepatocellular carcinoma. These agents have several drawbacks, such as drug resistance, nonspecific toxicity, and systemic side effects. Therefore, combination therapy of the drug and small interfering RNA could be a promising option to achieve high therapeutic efficacy while allowing a lower systemic dose. Therefore, we studied adding an alpha-fetoprotein siRNA (AFP-siRNA) incorporated on polymeric nanoparticles (NPs) along with angiogenesis inhibitor drugs. The AFP siRNA-loaded NPs were successfully synthesized at an average size of 242.00 ± 2.54 nm. Combination treatment of AFP-siRNA NPs and a low dose of sunitinib produced a synergistic effect in decreasing cell viability in an in vitro hepatocellular carcinoma (HCC) model. AFP-siRNA NPs together with sorafenib or sunitinib greatly inhibited cell proliferation, showing only 39.29 ± 2.72 and 44.04 ± 3.05% cell viability, respectively. Moreover, quantitative reverse transcription PCR (qRT-PCR) demonstrated that AFP-siRNA incorporated with NPs could significantly silence AFP-mRNA expression compared to unloaded NPs. Interestingly, the expression level of AFP-mRNA was further decreased to 28.53 ± 5.10% when sunitinib was added. Therefore, this finding was considered a new promising candidate for HCC treatment in reducing cell proliferation and enhancing therapeutic outcomes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , RNA Interferente Pequeno/uso terapêutico , alfa-Fetoproteínas/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Sunitinibe/uso terapêutico , Linhagem Celular Tumoral , Polímeros/uso terapêutico , RNA Mensageiro
5.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500236

RESUMO

Percutaneous coronary intervention (PCI) is a common procedure for the management of coronary artery obstruction. However, it usually causes vascular wall injury leading to restenosis that limits the long-term success of the PCI endeavor. The ultimate objective of this study was to develop the targeting nanoparticles (NPs) that were destined for the injured subendothelium and attract endothelial progenitor cells (EPCs) to the damaged location for endothelium regeneration. Biodegradable poly(lactic-co-glycolic acid) (PLGA) NPs were conjugated with double targeting moieties, which are glycoprotein Ib alpha chain (GPIbα) and human single-chain antibody variable fragment (HuscFv) specific to the cluster of differentiation 34 (CD34). GPIb is a platelet receptor that interacts with the von Willebrand factor (vWF), highly deposited on the damaged subendothelial surface, while CD34 is a surface marker of EPCs. A candidate anti-CD34 HuscFv was successfully constructed using a phage display biopanning technique. The HuscFv could be purified and showed binding affinity to the CD34-positive cells. The GPIb-conjugated NPs (GPIb-NPs) could target vWF and prevent platelet adherence to vWF in vitro. Furthermore, the HuscFv-conjugated NPs (HuscFv-NPs) could capture CD34-positive cells. The bispecific NPs have high potential to locate at the damaged subendothelial surface and capture EPCs for accelerating the vessel repair.


Assuntos
Nanopartículas , Intervenção Coronária Percutânea , Humanos , Endotélio Vascular/metabolismo , Fator de von Willebrand/metabolismo , Plaquetas/metabolismo , Anticorpos/metabolismo
6.
Biochem Biophys Res Commun ; 553: 191-197, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33774221

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers and is a leading cause of death. Delivery of therapeutic molecules, e.g., siRNA, to HCC cells could potentially be an alternative treatment for HCC. In this study, the siRNA targeting α-fetoprotein (AFP) mRNA was found to specifically induce apoptosis and significant cell death in HepG2 cells. It also enhanced the cytotoxic effects of doxorubicin by about two-fold, making it the candidate therapeutic molecule for HCC treatment. To deliver the siRNAs into HCC cells, the AFP siRNAs were loaded into the nanoparticles based on poly (lactic-co-glycolic) acid (PLGA). These nanoparticles induced apoptosis in HepG2 cells and synergistically increased the cytotoxicity of doxorubicin. In summary, the delivery of the AFP siRNA-loaded PLGA nanoparticles in combination with doxorubicin could be a very promising approach for the treatment of HCC.


Assuntos
Apoptose/genética , Doxorrubicina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , RNA Interferente Pequeno/genética , alfa-Fetoproteínas/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Nanopartículas/uso terapêutico , RNA Interferente Pequeno/farmacologia
7.
Mol Vis ; 27: 37-49, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633438

RESUMO

Purpose: Glaucoma is a neurodegenerative disease of the eye with an estimated prevalence of more than 111.8 million patients worldwide by 2040, with at least 6 to 8 million projected to become bilaterally blind. Clinically, the current method of slowing glaucomatous vision loss is to reduce intraocular pressure (IOP). In this manuscript, we describe the in vitro cytoprotective and in vivo long lasting IOP-lowering activity of the poly D, L-lactic-co-glycolic acid (PLGA) nanoparticle-encapsulated hybrid compound SA-2, possessing nitric oxide (NO) donating and superoxide radical scavenging functionalities. Methods: Previously characterized primary human trabecular meshwork (hTM) cells were used for the study. hTM cells were treated with SA-2 (100 µM, 200 µM, and 1,000 µM), SA-2 PLGA-loaded nanosuspension (SA-2 NPs, 0.1%), or vehicle for 30 min. Cyclic guanosine monophosphate (cGMP) and super oxide dismutase (SOD) levels were analyzed using commercial kits. In another experiment, hTM cells were pretreated with tert-butyl hydrogen peroxide (TBHP, 300 µM) for 30 min followed by treatment with escalating doses of SA-2 for 24 h, and CellTiter 96 cell proliferation assay was performed. For the biodistribution study, the cornea, aqueous humor, vitreous humor, retina, choroid, and sclera were collected after 1 h of administration of a single eye drop (30 µl) of SA-2 NPs (1% w/v) formulated in PBS to rat (n = 6) eyes. Compound SA-2 was quantified using high performance liquid chromatography /mass spectrometry (HPLC/MS). For the IOP-lowering activity study, a single SA-2 NPs (1%) eye drop was instilled in normotensive rats eyes and in the IOP-elevated rat eyes (n = 3/group, in the Morrison model of glaucoma), or Ad5TGFß2-induced ocular hypertensive (OHT) mouse eyes (n = 5/group). IOP was measured at various time points up to 72 h, and the experiment was repeated in triplicate. Mouse aqueous humor outflow facility was determined with multiple flow-rate infusion and episcleral venous pressure estimated with manometry. Results: SA-2 upregulated cGMP levels (six- to ten-fold) with an half maximal effective concentration (EC50) of 20.3 µM in the hTM cells and simultaneously upregulated (40-fold) the SOD enzyme when compared with the vehicle-treated hTM cells. SA-2 also protected hTM cells from TBHP-induced decrease in cell survival with an EC50 of 0.38 µM. A single dose of slow-release SA-2 NPs (1% w/v) delivered as an eye drop significantly lowered IOP (by 30%) in normotensive and OHT rodent eyes after 3 h post-dose, with the effect lasting up to 72 h. A statistically significant increase in aqueous outflow facility and a decrease in episcleral venous pressure was observed in rodents at this dose at 54 h. Conclusions: Hybrid compound SA-2 upregulated cGMP in hTM cells, increased outflow facility and decreased IOP in rodent models of OHT. Compound SA-2 possessing an antioxidant moiety provided additive cytoprotective activity to oxidatively stressed hTM cells by scavenging reactive oxygen species (ROS) and increasing SOD enzyme activity. Additionally, the PLGA nanosuspension formulation (SA-2 NPs) provided longer duration of IOP-lowering activity (up to 3 days) in comparison with the free non-encapsulated SA-2 drug. The data have implications for developing novel, non-prostaglandin therapeutics for IOP-lowering and cytoprotective effects with the possibility of an eye drop dosing regimen of once every 3 days for patients with glaucoma.


Assuntos
Anti-Hipertensivos/uso terapêutico , Modelos Animais de Doenças , Pressão Intraocular/efeitos dos fármacos , Hipertensão Ocular/tratamento farmacológico , Piperidinas/uso terapêutico , Malha Trabecular/efeitos dos fármacos , Administração Oftálmica , Adulto , Idoso de 80 Anos ou mais , Animais , Anti-Hipertensivos/farmacocinética , Anti-Hipertensivos/farmacologia , Humor Aquoso/fisiologia , Disponibilidade Biológica , Células Cultivadas , GMP Cíclico/metabolismo , Portadores de Fármacos , Feminino , Sequestradores de Radicais Livres/farmacocinética , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Glicolatos/química , Humanos , Masculino , Camundongos Endogâmicos C57BL , Doadores de Óxido Nítrico/farmacocinética , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/uso terapêutico , Hipertensão Ocular/metabolismo , Soluções Oftálmicas , Piperidinas/farmacocinética , Piperidinas/farmacologia , Ratos , Ratos Endogâmicos BN , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Esclera/irrigação sanguínea , Superóxido Dismutase/metabolismo , Distribuição Tecidual , Malha Trabecular/metabolismo , Pressão Venosa/fisiologia
8.
Nanomedicine ; 35: 102400, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33866011

RESUMO

The production dysregulation of reactive oxygen species (ROS) and nitric oxide (NO) in ischemic tissues results in endothelial dysfunction, hyperinflammation and poor blood circulation. Here, we report a hybrid molecule, SA-10 with both NO donating and ROS scavenging abilities that demonstrated potent cytoprotection and tube formation activity in endothelial cells under H2O2-induced oxidative stress. SA-10 loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (SA-10 NPs) were delivered intramuscularly (IM) to two murine hindlimb ischemia models. In the acute mode ischemia/reperfusion (I/R), the muscle damage, hyperinflammation, and lung edema were significantly reduced 3 days post-dose while in the chronic ischemia model, significant improvement of blood perfusion and physical endurance was observed over 30 days (P < 0.05). Elderly patients with acute and chronic limb ischemia have limited options for surgical or endovascular interventions, so we anticipate that a product like SA-10 NPs has potential as one of the therapeutic alternatives to surgery.


Assuntos
Membro Posterior/irrigação sanguínea , Isquemia/tratamento farmacológico , Nanocápsulas , Doadores de Óxido Nítrico , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Isquemia/metabolismo , Isquemia/fisiopatologia , Camundongos , Nanocápsulas/química , Nanocápsulas/uso terapêutico , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia
9.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L936-L945, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785346

RESUMO

Paracrine erythropoietin (EPO) signaling in the lung recruits endothelial progenitor cells, promotes cell maturation and angiogenesis, and is upregulated during canine postpneumonectomy (PNX) compensatory lung growth. To determine whether inhalational delivery of exogenous EPO augments endogenous post-PNX lung growth, adult canines underwent right PNX and received, via a permanent tracheal stoma, weekly nebulization of recombinant human EPO-containing nanoparticles or empty nanoparticles (control) for 16 wk. Lung function was assessed under anesthesia pre- and post-PNX. The remaining lobes were fixed for detailed morphometric analysis. Compared with control treatment, EPO delivery significantly increased serum EPO concentration without altering systemic hematocrit or hemoglobin concentration and abrogated post-PNX lipid oxidative stress damage. EPO delivery modestly increased post-PNX volume densities of the alveolar septum per unit of lung volume and type II epithelium and endothelium per unit of septal tissue volume in selected lobes. EPO delivery also augmented the post-PNX increase in alveolar double-capillary profiles, a marker of intussusceptive capillary formation, in all remaining lobes. EPO treatment did not significantly alter absolute resting lung volumes, lung and membrane diffusing capacities, alveolar-capillary blood volume, pulmonary blood flow, lung compliance, or extravascular alveolar tissue volumes or surface areas. Results established the feasibility of chronic inhalational delivery of growth-modifying biologics in a large animal model. Exogenous EPO selectively enhanced cytoprotection and alveolar angiogenesis in remaining lobes but not whole-lung extravascular tissue growth or resting function; the nonuniform response contributes to structure-function discrepancy, a major challenge for interventions aimed at amplifying the innate potential for compensatory lung growth.


Assuntos
Capilares/crescimento & desenvolvimento , Eritropoetina/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Pneumonectomia , Alvéolos Pulmonares , Administração por Inalação , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Cães , Complacência Pulmonar/efeitos dos fármacos , Masculino , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/cirurgia
10.
Small ; 14(32): e1800644, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29952061

RESUMO

Peripheral arterial disease (PAD) is defined as a slow, progressive disorder of the lower extremity arterial vessels characterized by chronic narrowing that often results in occlusion and is associated with loss of functional capacity. Although the PAD occurrence rate is increasing in the elderly population, outcomes with current treatment strategies are suboptimal. Hence, there is an urgent need to develop new technologies that overcome limitations of traditional modalities for PAD detection and therapy. In this Review, the application of nanotechnology as a tool that bridges the gap in PAD diagnosis and therapy is in focus. Several materials including synthetic, natural, biodegradable, and biocompatible materials are used to develop nanoparticles for PAD diagnostic and/or therapeutic applications. Moreover, various recent research approaches are being explored to diagnose PAD through multimodality imaging with different nanoplatforms. Further efforts include targeted delivery of various therapeutic agents using nanostructures as carriers to treat PAD. Last, but not least, despite being a fairly new field, researchers are exploring the use of nanotheranostics for PAD detection and therapy.


Assuntos
Nanopartículas/uso terapêutico , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/terapia , Animais , Humanos , Imageamento por Ressonância Magnética , Imagem Óptica , Nanomedicina Teranóstica , Enxerto Vascular
11.
Int J Mol Sci ; 18(2)2017 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-28208666

RESUMO

Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement). In this work, investigations of the switching mechanism of a recently reported near-infrared environment-sensitive fluorophore, ADP(CA)2, were conducted. Besides, multiple potential biomedical applications of this switchable fluorescent probe have been demonstrated, including wash-free live-cell fluorescence imaging, in vivo tissue fluorescence imaging, temperature sensing, and ultrasound-switchable fluorescence (USF) imaging. The fluorescence of the ADP(CA)2 is extremely sensitive to the microenvironment, especially polarity and viscosity. Our investigations showed that the fluorescence of ADP(CA)2 can be switched on by low polarity, high viscosity, or the presence of protein and surfactants. In wash-free live-cell imaging, the fluorescence of ADP(CA)2 inside cells was found much brighter than the dye-containing medium and was retained for at least two days. In all of the fluorescence imaging applications conducted in this study, high target-to-noise (>5-fold) was achieved. In addition, a high temperature sensitivity (73-fold per Celsius degree) of ADP(CA)2-based temperature probes was found in temperature sensing.


Assuntos
Técnicas Biossensoriais , Compostos de Boro , Corantes Fluorescentes , Imagem Óptica , Animais , Compostos de Boro/química , Rastreamento de Células , Fluorescência , Corantes Fluorescentes/química , Humanos , Substâncias Macromoleculares , Imagem Molecular , Estrutura Molecular , Imagens de Fantasmas , Tensoativos , Ultrassonografia , Viscosidade
12.
Int J Mol Sci ; 18(2)2017 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-28165390

RESUMO

Simultaneous imaging of multiple targets (SIMT) in opaque biological tissues is an important goal for molecular imaging in the future. Multi-color fluorescence imaging in deep tissues is a promising technology to reach this goal. In this work, we developed a dual-modality imaging system by combining our recently developed ultrasound-switchable fluorescence (USF) imaging technology with the conventional ultrasound (US) B-mode imaging. This dual-modality system can simultaneously image tissue acoustic structure information and multi-color fluorophores in centimeter-deep tissue with comparable spatial resolutions. To conduct USF imaging on the same plane (i.e., x-z plane) as US imaging, we adopted two 90°-crossed ultrasound transducers with an overlapped focal region, while the US transducer (the third one) was positioned at the center of these two USF transducers. Thus, the axial resolution of USF is close to the lateral resolution, which allows a point-by-point USF scanning on the same plane as the US imaging. Both multi-color USF and ultrasound imaging of a tissue phantom were demonstrated.


Assuntos
Imagem Molecular/métodos , Imagem Óptica/métodos , Ultrassonografia/métodos , Meios de Contraste , Humanos , Processamento de Imagem Assistida por Computador , Imagem Molecular/instrumentação , Imagem Óptica/instrumentação , Ultrassonografia/instrumentação
13.
Nanomedicine ; 12(3): 811-821, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26518603

RESUMO

Our goals were to develop and establish nanoparticle (NP)-facilitated inhalational gene delivery, and to validate its biomedical application by testing the hypothesis that targeted upregulation of pulmonary erythropoietin receptor (EpoR) expression protects against lung injury. Poly-lactic-co-glycolic acid (PLGA) NPs encapsulating various tracers were characterized and nebulizated into rat lungs. Widespread NP uptake and distribution within alveolar cells were visualized by magnetic resonance imaging, and fluorescent and electron microscopy. Inhalation of nebulized NPs bearing EpoR cDNA upregulated pulmonary EpoR expression and downstream signal transduction (ERK1/2 and STAT5 phosphorylation) in rats for up to 21 days, and attenuated hyperoxia-induced damage in lung tissue based on apoptosis, oxidative damage of DNA, protein and lipid, tissue edema, and alveolar morphology compared to vector-treated control animals. These results establish the feasibility and therapeutic efficacy of NP-facilitated cDNA delivery to the lung, and demonstrate that targeted pulmonary EpoR upregulation mitigates acute oxidative lung damage. FROM THE CLINICAL EDITOR: Acute lung injury often results in significant morbidity and mortality, and current therapeutic modalities have proven to be ineffective. In this article, the authors developed nanocarrier based gene therapy in an attempt to upregulate the expression of pulmonary erythropoietin receptor in an animal model. Inhalation delivery resulted in reduction of lung damage.


Assuntos
DNA Complementar/uso terapêutico , Hiperóxia/terapia , Ácido Láctico/química , Lesão Pulmonar/terapia , Pulmão/patologia , Nanopartículas/química , Ácido Poliglicólico/química , Receptores da Eritropoetina/genética , Administração por Inalação , Animais , Linhagem Celular , DNA Complementar/administração & dosagem , DNA Complementar/genética , Técnicas de Transferência de Genes , Humanos , Hiperóxia/genética , Hiperóxia/patologia , Pulmão/metabolismo , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Nanopartículas/ultraestrutura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Regulação para Cima
14.
Artigo em Inglês | MEDLINE | ID: mdl-26052192

RESUMO

In this work we first introduced a recently developed high-resolution, deep-tissue imaging technique, ultrasound-switchable fluorescence (USF). The imaging principles based on two types of USF contrast agents were reviewed. To improve USF imaging techniques further, excellent USF contrast agents were developed based on high-performance thermoresponsive polymers and environment-sensitive fluorophores. Herein, such contrast agents were synthesized and characterized with five key parameters: (1) peak excitation and emission wavelengths (λex and λem), (2) the fluorescence intensity ratio between on and off states (IOn/IOff), (3) the fluorescence lifetime ratio between on and off states (τOn/τOff), (4) the temperature threshold to switch on fluorophores (Tth), and (5) the temperature transition bandwidth (TBW). We mainly investigated fluorescence intensity and lifetime changes of four environment-sensitive dyes [7-(2-Aminoethylamino)-N,N-dimethyl-4-benzofurazansulfonamide (DBD-ED), St633, Sq660, and St700] as a function of temperature, while the dye was attached to poly(N-isopropylacrylamide) linear polymers or encapsulated in nanoparticles. Six fluorescence resonance energy transfer systems were invented in which both the donor (DBD-ED or ST425) and the acceptor (Sq660) were adopted. Our results indicate that three Förster resonance energy transfer systems, where both IOn/IOff and τOn/τOff are larger than 2.5, are promising for application in future surface tissue bioimaging by USF technique.

15.
Bioact Mater ; 34: 422-435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38282968

RESUMO

Cell membrane-derived nanoparticles (NPs) have recently gained popularity due to their desirable features in drug delivery such as mimicking properties of native cells, impeding systemic clearance, and altering foreign body responses. Besides NP technology, adoptive immunotherapy has emerged due to its promise in cancer specificity and therapeutic efficacy. In this research, we developed a biomimetic drug carrier based on chimeric antigen receptor (CAR) transduced T-cell membranes. For that purpose, anti-HER2 CAR-T cells were engineered via lentiviral transduction of anti-HER2 CAR coding lentiviral plasmids. Anti-HER2 CAR-T cells were characterized by their specific activities against the HER2 antigen and used for cell membrane extraction. Anti-cancer drug Cisplatin-loaded poly (D, l-lactide-co-glycolic acid) (PLGA) NPs were coated with anti-human epidermal growth factor receptor 2 (HER2)-specific CAR engineered T-cell membranes. Anti-HER2 CAR-T-cell membrane-coated PLGA NPs (CAR-T-MNPs) were characterized and confirmed via fluorescent microscopy and flow cytometry. Membrane-coated NPs showed a sustained drug release over the course of 21 days in physiological conditions. Cisplatin-loaded CAR-T-MNPs also inhibited the growth of multiple HER2+ cancer cells in vitro. In addition, in vitro uptake studies revealed that CAR-T-MNPs showed an increased uptake by A549 cells. These results were also confirmed via in vivo biodistribution and therapeutic studies using a subcutaneous lung cancer model in nude mice. CAR-T-MNPs localized preferentially at tumor areas compared to those of other studied groups and consisted of a significant reduction in tumor growth in tumor-bearing mice. In Conclusion, the new CAR modified cell membrane-coated NP drug-delivery platform has demonstrated its efficacy both in vitro and in vivo. Therefore, CAR engineered membrane-coated NP system could be a promising cell-mimicking drug carrier that could improve therapeutic outcomes of lung cancer treatments.

16.
Biomed Opt Express ; 14(9): 4406-4420, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791288

RESUMO

Measuring the local background temperature in diseased and inflamed tissues is highly desirable, especially in a non-invasive way. In this work, ultrasound-switchable fluorescence (USF) technique was utilized to estimate the local background temperature for the first time by analyzing the temperature dependence of fluorescence emission from USF contrast agents induced by a focused ultrasound (FU) beam. First, temperature-sensitive USF agents with distinct temperature switching-on thresholds were synthesized, and their thermal switching characteristics were quantified using an independent spectrometer system. Second, the USF contrast agent suspension was injected into a microtube that was embedded into a phantom and the dynamic USF signal was acquired using a camera-based USF system. The differential profile of the measured dynamic USF signal was computed and compared with the thermal switching characteristics. This allowed for the calculation of the local background temperature of the sample in the FU focal volume based on the estimation of heating speed. An infrared (IR) camera was used to acquire the surface temperature of the sample and further compare it with the USF system. The results showed that the difference between the temperatures acquired from the USF thermometry and the IR thermography was 0.64 ± 0.43 °C when operating at the physiological temperature range from 35.27 to 39.31 °C. These results indicated the potential use of the USF system for measuring the local temperature in diseased tissues non-invasively. The designed USF-based thermometry shows a broad application prospect in high spatial resolution temperature imaging with a tunable measurement range in deep tissue.

17.
Nano Res ; 16(1): 1009-1020, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38098888

RESUMO

Near-infrared fluorescence imaging has emerged as a noninvasive, inexpensive, and ionizing-radiation-free monitoring tool for assessing tumor growth and treatment efficacy. In particular, ultrasound switchable fluorescence (USF) imaging has been explored with improved imaging sensitivity and spatial resolution in centimeter-deep tissues. This study achieved size control of polymer-based and indocyanine green (ICG) encapsulated USF contrast agents, capable of accumulating at the tumor after intravenous injections. These nanoprobes varied in size from 58 nm to 321 nm. The bioimaging profiles demonstrated that the proposed nanoparticles can efficiently eliminate the background light from normal tissue and show a tumor-specific fluorescence enhancement in the BxPC-3 tumor-bearing mice models possibly via the enhanced permeability and retention effect. In vivo tumor USF imaging further proved that these nanoprobes can effectively be switched 'ON' with enhanced fluorescence in response to a focused ultrasound stimulation in the tumor microenvironment, contributing to the high-resolution USF images. Therefore, our findings suggest that ICG-encapsulated nanoparticles are good candidates for USF imaging of tumors in living animals, indicating their great potential in optical tumor imaging in deep tissue.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35950266

RESUMO

Recently, the aging population has increased exponentially around the globe bringing more challenges to improve quality of life in those populations while reducing the economic burden on healthcare systems. Aging is associated with changes in the immune system culminating in detrimental effects such as immune dysfunction, immunosenescence, and chronic inflammation. Age-related decline of immune functions is associated with various pathologies including cardiovascular, autoimmune, neurodegenerative, and infectious diseases to name a few. Conventional treatment addresses the onset of age-related diseases by early detection of risk factors, administration of vaccines as preventive care, immunomodulatory treatment, and other dietary supplements. However, these approaches often come with systemic side-effects, low bioavailability of therapeutic agents, and poor outcomes seen in the elderly. Recent innovations in nanotechnology have led to the development of novel biomaterials/nanomaterials, which explore targeted drug delivery and immunomodulatory interactions in vivo. Current nanotechnology-based immunomodulatory approaches that have the potential to be used as therapeutic interventions for some prominent age-related diseases are discussed here. Finally, we explore challenges and future aspects of nanotechnology in the treatments of age-related disorders to improve quality of life in the elderly. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Doenças Cardiovasculares , Imunomodulação , Nanomedicina , Nanopartículas , Doenças do Sistema Nervoso , Idoso , Humanos , Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico , Qualidade de Vida , Doenças Cardiovasculares/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico
19.
Nanomaterials (Basel) ; 14(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38202502

RESUMO

To develop a potential cancer treatment, we formulated a novel drug delivery platform made of poly(lactic-co-glycolic) acid (PLGA) and used a combination of an emerging siRNA technology and an extracted natural substance called catechins. The synthesized materials were characterized to determine their properties, including morphology, hydrodynamic size, charge, particle stability, and drug release profile. The therapeutic effect of AFP-siRNA and epigallocatechin gallate (EGCG) was revealed to have remarkable cytotoxicity towards HepG2 when in soluble formulation. Notably, the killing effect was enhanced by the co-treatment of AFP-siRNA-loaded PLGA and EGCG. Cell viability significantly dropped to 59.73 ± 6.95% after treatment with 12.50 µg/mL of EGCG and AFP-siRNA-PLGA. Meanwhile, 80% of viable cells were observed after treatment with monotherapy. The reduction in the survival of cells is a clear indication of the complementary action of both active EGCG and AFP-siRNA-loaded PLGA. The corresponding cell death was involved in apoptosis, as evidenced by the increased caspase-3/7 activity. The combined treatment exhibited a 2.5-fold increase in caspase-3/7 activity. Moreover, the nanoparticles were internalized by HepG2 in a time-dependent manner, indicating the appropriate use of PLGA as a carrier. Accordingly, a combined system is an effective therapeutic strategy.

20.
Bioact Mater ; 19: 348-359, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35892002

RESUMO

Cardiac extracellular matrices (ECM) play crucial functional roles in cardiac biomechanics. Previous studies have mainly focused on collagen, the major structural ECM in heart wall. The role of elastin in cardiac mechanics, however, is poorly understood. In this study, we investigated the spatial distribution and microstructural morphologies of cardiac elastin in porcine left ventricles. We demonstrated that the epicardial elastin network had location- and depth-dependency, and the overall epicardial elastin fiber mapping showed certain correlation with the helical heart muscle fiber architecture. When compared to the epicardial layer, the endocardial layer was thicker and has a higher elastin-collagen ratio and a denser elastin fiber network; moreover, the endocardial elastin fibers were finer and more wavy than the epicardial elastin fibers, all suggesting various interface mechanics. The myocardial interstitial elastin fibers co-exist with the perimysial collagen to bind the cardiomyocyte bundles; some of the interstitial elastin fibers showed a locally aligned, hinge-like structure to connect the adjacent cardiomyocyte bundles. This collagen-elastin combination reflects an optimal design in which the collagen provides mechanical strength and elastin fibers facilitate recoiling during systole. Moreover, cardiac elastin fibers, along with collagen network, closely associated with the Purkinje cells, indicating that this ECM association could be essential in organizing cardiac Purkinje cells into "fibrous" and "branching" morphologies and serving as a protective feature when Purkinje fibers experience large deformations in vivo. In short, our observations provide a structural basis for future in-depth biomechanical investigations and biomimicking of this long-overlooked cardiac ECM component.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA