Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Stem Cells ; 39(12): 1671-1687, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34460135

RESUMO

The study of proliferation regulation in human pluripotent stem cells is crucial to gain insights into understanding the physiology of these cells. However, redox regulation of the pluripotent cell cycle remains largely unexplored. Here, using human embryonic stem cells (hESCs) as well as human induced pluripotent stem cells (hiPSCs), we demonstrate that the level of reactive oxygen species (ROS) in pluripotent cells oscillates in accordance with the cell cycle progression with the peak occurring at transition from S to G2 /M phase of the cycle. A decrease of this level by antioxidants leads to hindered S-phase initiation and progression but does not affect the early-G1 -phase or mitosis. Cells exposed to antioxidants in the early-G1 -phase accumulate the phosphorylated retinoblastoma protein and overcome the restriction point but are unable to accumulate the main regulators of the S phase-CYCLIN A and GEMININ. Based on the previous findings that CYCLIN A stability is affected by redox homeostasis disturbances in somatic cells, we compared the responses to antioxidant treatments in hESCs and in their differentiated fibroblast-like progeny cells (difESCs). In difESCs, similar to hESCs, a decrease in ROS level results in the disruption of S-phase initiation accompanied by a deficiency of the CYCLIN A level. Moreover, in antioxidant-treated cells, we revealed the accumulation of DNA breaks, which was accompanied by activation of the apoptosis program in pluripotent cells. Thus, we conclude that maintaining the physiological ROS level is essential for promotion of proliferation and accurate DNA synthesis in pluripotent cells and their differentiated descendants.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Antioxidantes/metabolismo , Ciclo Celular/fisiologia , Proliferação de Células , Ciclina A/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitose , Células-Tronco Pluripotentes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Cell Mol Life Sci ; 77(7): 1357-1370, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31728580

RESUMO

Cell senescence seems to be an ambivalent biological phenomenon in many aspects. At the cellular level it is considered as an irreversible cell-cycle arrest commonly caused by the DNA damage. Senescent cells harbor a lot of impairments in various intracellular systems. Presence of senescent cells within tissues should ultimately lead to their malfunctioning. However, the interlink between cellular senescence and tissue/organismal functioning is far from always being unidirectional. The entangled and complex relationship between senescence and tissue-specific decidual differentiation of endometrial stromal cells (ESCs) is the excellent example reflecting dualism of cellular senescence. ESCs decidualization conditions endometrium responsiveness to embryonic signals and plays a critical role in embryo biosensoring, selection and implantation. Based on the analysis of the existing literary data, here we will try (1) to puzzle out how cellular senescence simultaneously may be an integral part of normal decidualization and may be involved in the progression of repeated implantation failures and recurrent pregnancy losses; (2) to suppose the sequence of cellular events reflecting the role of ESCs' senescence during normal and impaired decidualization. Together, the deep scan of the interlink between ESCs' senescence and decidualization will allow to suggest the preferable application scheme for senolytics targeting senescent cells as a possible approach to restore impaired endometrial receptivity and thus to increase the effectiveness of in vitro fertilization cycles.


Assuntos
Senescência Celular , Endométrio/citologia , Fertilidade/fisiologia , Animais , Células-Tronco Embrionárias/citologia , Feminino , Humanos , Reprodução , Células Estromais/citologia
3.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204881

RESUMO

Mesenchymal stem cells (MSCs) are broadly applied in regenerative therapy to replace cells that are lost or impaired during disease. The low survival rate of MSCs after transplantation is one of the major limitations heavily influencing the success of the therapy. Unfavorable microenvironments with inflammation and oxidative stress in the damaged regions contribute to MSCs loss. Most of the strategies developed to overcome this obstacle are aimed to prevent stress-induced apoptosis, with little attention paid to senescence-another common stress reaction of MSCs. Here, we proposed the strategy to prevent oxidative stress-induced senescence of human endometrial stem cells (hMESCs) based on deferoxamine (DFO) application. DFO prevented DNA damage and stress-induced senescence of hMESCs, as evidenced by reduced levels of reactive oxygen species, lipofuscin, cyclin D1, decreased SA-ß-Gal activity, and improved mitochondrial function. Additionally, DFO caused accumulation of HIF-1α, which may contribute to the survival of H2O2-treated cells. Importantly, cells that escaped senescence due to DFO preconditioning preserved all the properties of the initial hMESCs. Therefore, once protecting cells from oxidative damage, DFO did not alter further hMESCs functioning. The data obtained may become the important prerequisite for development of a new strategy in regenerative therapy based on MSCs preconditioning using DFO.


Assuntos
Desferroxamina/farmacologia , Endométrio/efeitos dos fármacos , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Microambiente Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ciclina D1/genética , Endométrio/citologia , Endométrio/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Inflamação/induzido quimicamente , Inflamação/patologia , Lipofuscina/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Espécies Reativas de Oxigênio , Medicina Regenerativa , Transdução de Sinais/efeitos dos fármacos
4.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769282

RESUMO

In our previous study, we found that high doses of several substances with antioxidant capacities (Tempol, resveratrol, diphenyleneiodonium) can cause genotoxic stress and induce premature senescence in the human mesenchymal stem cells (MSCs). Here, using whole-transcriptome analysis, we revealed the signs of endoplasmic reticulum stress and unfolded protein response (UPR) in MSCs stressed with Tempol and resveratrol. In addition, we found the upregulation of genes, coding the UPR downstream target APC/C, and E3 ubiquitin ligase that regulate the stability of cell cycle proteins. We performed the molecular analysis, which further confirmed the untimely degradation of APC/C targets (cyclin A, geminin, and Emi1) in MSCs treated with antioxidants. Human fibroblasts responded to antioxidant applications similarly. We conclude that endoplasmic reticulum stress and impaired DNA synthesis regulation can be considered as potential triggers of cell damage and premature senescence stimulated by high-dose antioxidant treatments.


Assuntos
Antioxidantes/farmacologia , Senescência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Linhagem Celular , Humanos
5.
Biochem Biophys Res Commun ; 496(4): 1162-1168, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29397942

RESUMO

Accumulating evidence suggests that the senescence-messaging secretome (SMS) factors released by senescent cells play a key role in cellular senescence and physiological aging. Phenomenon of the senescence induction in human endometrium-derived mesenchymal stem cells (MESCs) in response to SMS factors has not yet been described. In present study, we examine a hypothesis whether the conditioned medium from senescent cells (CM-old) may promote premature senescence of young MESCs. In this case, we assume that SMS factors, containing in CM-old are capable to trigger senescence mechanism in a paracrine manner. A long-term cultivation MESCs in the presence of CM-old caused deceleration of cell proliferation along with emerging senescence phenotype, including increase in both the cell size and SA-ß-Gal activity. The phosphorylation of p53 and MAPKAPK-2, a direct target of p38MAPK, as well as the expression of p21Cip1 and p16Ink4a were increased in CM-old treated cells with senescence developing whereas the Rb phosphorylation was diminished. The senescence progression was accompanied by both enhanced ROS generation and persistent activation of DNA damage response, comprising protein kinase ATM, histone H2A.X, and adapter protein 53BP1. Thus, we suggest that a senescence inducing signal is transmitted through p16/MAPKAPK-2/Rb and DDR-mediated p53/p21/Rb signaling pathways. This study is the first to demonstrate that the SMS factors secreted in conditioned medium of senescent MESCs trigger a paracrine mechanism of premature senescence in young cells.


Assuntos
Comunicação Celular/fisiologia , Senescência Celular/fisiologia , Endométrio/citologia , Endométrio/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Proteoma/metabolismo , Linhagem Celular , Feminino , Humanos , Transdução de Sinais/fisiologia
6.
Biochem Biophys Res Commun ; 482(4): 563-568, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27856251

RESUMO

Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances in hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca2+ entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells.


Assuntos
Sinalização do Cálcio , Canais Iônicos/metabolismo , Mecanotransdução Celular , Células-Tronco Mesenquimais/metabolismo , Cálcio/metabolismo , Células Cultivadas , Endométrio/citologia , Feminino , Humanos , Células-Tronco Mesenquimais/citologia
7.
Biochem Biophys Res Commun ; 430(1): 331-5, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23178573

RESUMO

While epidermal growth factor (EGF) is a well known mitogen, high doses of EGF result in a paradoxical apoptotic response in the cells that overexpress EGF receptor such as A431 epidermoid carcinoma cells. EGF-induced apoptosis in A431 cells is dependent upon activation of transcription factor STAT1. In this study, we demonstrate that p38 MAP kinase is another important mediator of EGF-dependent pro-apoptotic response in A431 cells. By utilizing p38 MAP kinase inhibitors, SB203580 and BIRB0796, we significantly reduced the integral growth-inhibiting as well as pro-apoptotic effects of EGF. Moreover, we observed that inhibition of p38 MAP kinase markedly decreased phosphorylation of tyrosine 701 in STAT1, while neither EGF-induced accumulation nor serine phosphorylation of STAT1 was decreased. We propose that p38 MAP kinase mediates STAT1 tyrosine phosphorylation, thereby enforcing EGF-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Fator de Transcrição STAT1/metabolismo , Tirosina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Humanos , Fosforilação/efeitos dos fármacos
8.
Cells ; 10(5)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064429

RESUMO

Chromothripsis has been defined as complex patterns of alternating genes copy number changes (normal, gain or loss) along the length of a chromosome or chromosome segment (International System for Human Cytogenomic Nomenclature 2020). The phenomenon of chromothripsis was discovered in 2011 and changed the concept of genome variability, mechanisms of oncogenic transformation, and hereditary diseases. This review describes the phenomenon of chromothripsis, its prevalence in genomes, the mechanisms underlying this phenomenon, and methods of its detection. Due to the fact that most often the phenomenon of chromothripsis occurs in cancer cells, in this review, we will separately discuss the issue of the contribution of chromothripsis to the process of oncogenesis.


Assuntos
Carcinogênese/genética , Cromotripsia , Animais , Humanos
9.
Front Cell Dev Biol ; 9: 624053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659249

RESUMO

Endometrium is the uterine lining that undergoes hundreds of cycles of proliferation, differentiation, and desquamation throughout a woman's reproductive life. Recently, much attention is paid to the appropriate endometrial functioning, as decreased endometrial receptivity is stated to be one of the concerns heavily influencing successes of embryo implantation rates and the efficacy of in vitro fertilization (IVF) treatment. In order to acquire and maintain the desired endometrial receptivity during IVF cycles, luteal phase support by various progestagens or other hormonal combinations is generally recommended. However, today, the selection of the specific hormonal therapy during IVF seems to be empirical, mainly due to a lack of appropriate tools for personalized approach. Here, we designed the genetic tool for patient-specific optimization of hormonal supplementation schemes required for the maintenance of endometrial receptivity during luteal phase. We optimized and characterized in vitro endometrial stromal cell (ESC) decidualization model as the adequate physiological reflection of endometrial sensitivity to steroid hormones. Based on the whole transcriptome RNA sequencing and the corresponding bioinformatics, we proposed that activation of the decidual prolactin (PRL) promoter containing ancient transposons MER20 and MER39 may reflect functioning of the core decidual regulatory network. Furthermore, we cloned the sequence of decidual PRL promoter containing MER20 and part of MER39 into the expression vector to estimate the effectiveness of ESC decidual response and verified sensitivity of the designed system. We additionally confirmed specificity of the generated tool using human diploid fibroblasts and adipose-derived human mesenchymal stem cells. Finally, we demonstrated the possibility to apply our tool for personalized hormone screening by comparing the effects of natural progesterone and three synthetic analogs (medroxyprogesterone 17-acetate, 17α-hydroxyprogesterone caproate, dydrogesterone) on decidualization of six ESC lines obtained from patients planning to undergo the IVF procedure. To sum up, we developed the "all-in-one" genetic tool based on the MER20/MER39 expression cassette that provides the ability to predict the most appropriate hormonal cocktail for endometrial receptivity maintenance specifically and safely for the patient, and thus to define the personal treatment strategy prior to the IVF procedure.

10.
J Pers Med ; 11(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070346

RESUMO

Endometrial mesenchymal stem/stromal cells (eMSCs) hold great promise in bioengineering and regenerative medicine due to their high expansion potential, unique immunosuppressive properties and multilineage differentiation capacity. Usually, eMSCs are maintained and applied as a monolayer culture. Recently, using animal models with endometrial and skin defects, we showed that formation of multicellular aggregates known as spheroids from eMSCs enhances their tissue repair capabilities. In this work, we refined a method of spheroid formation, which makes it possible to obtain well-formed aggregates with a narrow size distribution both at early eMSC passages and after prolonged cultivation. The use of serum-free media allows this method to be used for the production of spheroids for clinical purposes. Wound healing experiments on animals confirmed the high therapeutic potency of the produced eMSC spheroids in comparison to the monolayer eMSC culture.

11.
Cells ; 9(10)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096691

RESUMO

The synthetic polymer, polyallylamine hydrochloride (PAA), is found in a variety of applications in biotechnology and medicine. It is used in gene and siRNA transfer, to form microcapsules for targeted drug delivery to damaged and tumor cells. Conventional chemotherapy often does not kill all cancer cells and leads to multidrug resistance (MDR). Until recently, studies of the effects of PAA on cells have mainly focused on their morphological and genetic characteristics immediately or several hours after exposure to the polymer. The properties of the cell progeny which survived the sublethal effects of PAA and resumed their proliferation, were not monitored. The present study demonstrated that treatment of immortalized Chinese hamster cells CHLV-79 RJK sensitive (RJK) and resistant (RJKEB) to ethidium bromide (EB) with cytotoxic doses of PAA, selected cells with increased karyotypic instability, were accompanied by changes in the expression of p53 genes c-fos, topo2-α, hsp90, hsc70. These changes did not contribute to the progression of MDR, accompanied by the increased sensitivity of these cells to the toxic effects of doxorubicin (DOX). Our results showed that PAA does not increase the oncogenic potential of immortalized cells and confirmed that it can be used for intracellular drug delivery for anticancer therapy.


Assuntos
Resistência a Múltiplos Medicamentos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Cariotipagem , Poliaminas/farmacologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Forma Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cricetulus , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos
12.
Front Cell Dev Biol ; 8: 473, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612993

RESUMO

Mesenchymal stem cells are currently tested as a promising tool for the treatment of a wide range of human diseases. Enhanced therapeutic potential of spheroids formed from these cells has been proved in numerous studies, however, the fundamental basics of this effect are still being discussed. In this work, we showed that endometrial mesenchymal stem/stromal cells (eMSCs) assembled in spheroids possess a higher therapeutic efficacy compared to cells grown in monolayer in the treatment of the defects that are non-specific for eMSC tissue origin - skin wounds. With the purpose to elucidate the possible causes of superior spheroid potency, we compared the tolerance of eMSC cultivated in spheres and monolayer to the stress insults. Using genetically encoded hydrogen peroxide biosensor HyPer, we showed that three-dimensional configuration (3D) helped to shield the inner cell layers of spheroid from the external H2O2-induced oxidative stress. However, the viability of oxidatively damaged eMSCs in spheroids appeared to be much lower than that of monolayer cells. An extensive analysis, which included administration of heat shock and irradiation stress, revealed that cells in spheroids damaged by stress factors activate the apoptosis program, while in monolayer cells stress-induced premature senescence is developed. We found that basal down-regulation of anti-apoptotic and autophagy-related genes provides the possible molecular basis of the high commitment of eMSCs cultured in 3D to apoptosis. We conclude that predisposition to apoptosis provides the programmed elimination of damaged cells and contributes to the transplant safety of spheroids. In addition, to investigate the role of paracrine secretion in the wound healing potency of spheroids, we exploited the in vitro wound model (scratch assay) and found that culture medium conditioned by eMSC spheroids accelerates the migration of adherent cells. We showed that 3D eMSCs upregulate transcriptional activator, hypoxia-inducible factor (HIF)-1, and secret ten-fold more HIF-1-inducible pro-angiogenic factor VEGF (vascular endothelial growth factor) than monolayer cells. Taken together, these findings indicate that enhanced secretory activity can promote wound healing potential of eMSC spheroids and that cultivation in the 3D cell environment alters eMSC vital programs and therapeutic efficacy.

13.
PLoS One ; 15(5): e0232532, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32357161

RESUMO

Early endosomes, regarded as the main sorting station on endocytic pathway, are characterized by high frequency of homotypic fusions mediated by tethering protein EEA1. Despite intensive investigations, biogenesis of endosomes, boundaries between early and late endosomes, and process of cargo transition though them remain obscure. Here, using EGF/EGFR endocytosis as a model and confocal microscopy of fixed and live cells, we provide evidence favoring EEA1-vesicles being pre-existed vesicular compartment, that maintains its resident proteins' level and is sensitive to biosynthetic, but not endocytic pathway disturbance. EEA1-vesicles directly fuse with incoming EGF/EGFR-vesicles into hybrid endosomes with separated EEA1- and EGFR-domains, thus providing a platform for rapid achievement of an excess of surface-derived membrane that is used to form intraluminal vesicles (ILVs). Thus, multivesicular structures colocalized with EEA1 are still early endosomes. "EEA1-cycle" ends by exclusion of EGFR-containing domains with ILVs inside that turns into MVE and restoration of initial EEA1-vesicles population.


Assuntos
Endossomos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vias Biossintéticas , Meios de Cultura Livres de Soro , Vesículas Citoplasmáticas/metabolismo , Endocitose , Receptores ErbB/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Modelos Biológicos , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo
14.
Aging (Albany NY) ; 12(2): 1987-2004, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31951594

RESUMO

Stress-induced premature cell senescence is well recognized to be accompanied by emerging the senescence-associated secretory phenotype (SASP). Secreted SASP factors can promote the senescence of normal neighboring cells through autocrine/paracrine pathways and regulate the senescence response, as well. Regarding human endometrium-derived mesenchymal stem cells (MESCs), the SASP regulation mechanisms as well as paracrine activity of senescent cells have not been studied yet. Here, we examined the role of insulin-like growth factor binding protein 3 (IGFBP3) in the paracrine senescence induction in young MESCs. The H2O2-induced premature senescence of MESCs led to increased IGFBP3 in conditioned media (CM). The inhibitory analysis of both MAPK and PI3K signaling pathways showed that IGFBP3 releasing from senescent cells is mainly regulated by PI3K/Akt pathway activity. IGFBP3 appears to be an important senescence-mediating factor as its immunodepletion from the senescent CM weakened the pro-senescent effect of CM on young MESCs and promoted their growth. In contrast, young MESCs acquired the senescence phenotype in response to simultaneous addition of recombinant IGFBP3 (rIGFBP3). The mechanism of extracellular IGFBP3 internalization was also revealed. The present study is the first to demonstrate a significant role of extracellular IGFBP3 in paracrine senescence induction of young MESCs.


Assuntos
Endométrio/citologia , Endométrio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina , Senescência Celular , Endocitose , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
15.
Cell Cycle ; 18(6-7): 742-758, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880567

RESUMO

Mesenchymal stem cells (MSCs) hold a great promise for successful development of regenerative medicine. Among the plenty of uncovered MSCs sources, desquamated endometrium collected from the menstrual blood probably remains the most accessible. Though numerous studies have been published on human endometrium-derived mesenchymal stem cells (hMESCs) properties in the past years, there are only a few data regarding their genetic modulation. Moreover, there is a lack of information about the fate of the transduced hMESCs. The present study aimed to optimize hMESCs transduction parameters and apply Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology for genome and secretome modification. The fate of hMESCs transduced either in presence of polybrene (Pb) or protamine sulfate (Ps) was assessed by alterations in CD expression profile, growth rate, cell size, migration capability, osteogenic, adipogenic, and decidual differential potentials. Here, we postulated that the use of Ps for hMESCs genetic manipulations is preferable, as it has no impact on the stem-cell properties, whereas Pb application is undesirable, as it induces cellular senescence. Plasminogen activator inhibitor-1 was selected for further targeted hMESCs genome and secretome modification using CRISPR/Cas9 systems. The obtained data provide optimized transduction scheme for hMESCs and verification of its effectiveness by successful hMESCs genome editing via CRISPR/Cas9 technology.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endométrio/fisiologia , Lentivirus/genética , Células-Tronco Mesenquimais/fisiologia , Células Cultivadas , Senescência Celular/genética , Feminino , Edição de Genes/métodos , Terapia Genética , Genoma/genética , Células HEK293 , Humanos , Medicina Regenerativa/métodos
16.
Aging (Albany NY) ; 11(21): 9912-9931, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31689238

RESUMO

Hormone-regulated proliferation and differentiation of endometrial stromal cells (ESCs) determine overall endometrial plasticity and receptivity to embryos. Previously we revealed that ESCs may undergo premature senescence, accompanied by proliferation loss and various intracellular alterations. Here we focused on whether and how senescence may be transmitted within the ESCs population. We revealed that senescent ESCs may induce paracrine senescence in young counterparts via cell contacts, secreted factors and extracellular vesicles. According to secretome-wide profiling we identified plasminogen activator inhibitor -1 (PAI-1) to be the most prominent protein secreted by senescent ESCs (data are available via ProteomeXchange with identifier PXD015742). By applying CRISPR/Cas9 techniques we disclosed that PAI-1 secreted by senescent ESCs may serve as the master-regulator of paracrine senescence progression within the ESCs population. Unraveled molecular basis of senescence transduction in the ESCs population may be further considered in terms of altered endometrial plasticity and sensitivity to invading embryo, thus contributing to the female infertility curing.


Assuntos
Senescência Celular , Endométrio/citologia , Comunicação Parácrina , Células Cultivadas , Técnicas de Cocultura , Endométrio/metabolismo , Feminino , Humanos , Proteoma , Células Estromais/metabolismo
17.
Sci Rep ; 9(1): 346, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674973

RESUMO

Intracellular monovalent ions have been shown to be important for cell proliferation, however, mechanisms through which ions regulate cell proliferation is not well understood. Ion transporters may be implicated in the intracellular signaling: Na+ and Cl- participate in regulation of intracellular pH, transmembrane potential, Ca2+ homeostasis. Recently, it is has been suggested that K+ may be involved in "the pluripotency signaling network". Our study has been focused on the relations between K+ transport and stem cell proliferation. We compared monovalent cation transport in human mesenchymal stem cells (hMSCs) at different passages and at low and high densities of culture as well as during stress-induced cell cycle arrest and revealed a decline in K+ content per cell protein which was associated with accumulation of G1 cells in population and accompanied cell proliferation slowing. It is suggested that cell K+ may be important for successful cell proliferation as the main intracellular ion that participates in regulation of cell volume during cell cycle progression. It is proposed that cell K+ content as related to cell protein is a physiological marker of stem cell proliferation and may be used as an informative test for assessing the functional status of stem cells in vitro.


Assuntos
Cátions/análise , Proliferação de Células , Citoplasma/química , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/fisiologia , Potássio/análise , Células Cultivadas , Humanos
18.
Int J Hematol ; 107(3): 286-296, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29022209

RESUMO

Doxorubicin (Dox) is an effective anticancer drug with known activity against a wide spectrum of malignancies, hematologic malignancies in particular. Despite extensive clinical use, the mechanisms of its side effects and negative action on normal cells remain under study. The aim of this study was to investigate the effect of Dox on cultured human mesenchymal stem cells (MSCs) derived from menstrual blood (eMSCs), bone marrow (BMSCs) and adipose tissue (AMSCs). Dox treatment in high doses decreased the survival of MSCs in a dose-dependent manner. Clinically relevant low doses of Dox induced premature senescence of eMSCs, BMSCs and AMSCs, but did not kill the cells. Dox caused cell cycle arrest and formation of γ-H2AX foci, and increased the number of SA-ß-gal-positive cells. BMSCs entered premature senescence earlier than other MSCs. It has been reported that neural-like cells differentiated from MSCs of various origins are more sensitive to Dox than their parent cells. Dox-treated differentiated MSCs exhibited lower viability and earlier generation of γ-H2AX foci. Dox administration inhibited secretory activity in neural-like cells. These findings suggest that a clinically relevant Dox dose damages cultured MSCs, inducing their premature senescence. MSCs are more resistant to this damage than differentiated cells.


Assuntos
Tecido Adiposo/citologia , Antineoplásicos/efeitos adversos , Células Sanguíneas/citologia , Células da Medula Óssea/citologia , Senescência Celular/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Menstruação , Células-Tronco Mesenquimais/citologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Histonas , Humanos
19.
PLoS One ; 13(12): e0209606, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30586456

RESUMO

The unique capacity of mesenchymal stem cells (MSCs) to migrate to the sites of damage, following intravenous transplantation, along with their proliferation and differentiation abilities make them promising candidates for MSC-based gene therapy. This therapeutic approach requires high efficacy delivery of stable transgenes to ensure their adequate expression in MSCs. One of the methods to deliver transgenes is via the viral transduction of MSCs. However, due to low transduction efficiency of MSCs, various polications are used to promote the association of viral particles with membranes of target cells. Among these polications polybrene is the most widely used one. Unfortunately, viral infection in presence of polybrene was shown to negatively affect proliferation rate of stem cells. The molecular mechanism underlying this effect is not yet uncovered. Therefore, the present study aimed to elucidate the mechanism of this phenomenon as well as to develop an effective approach to overcome the negative impact of polybrene on the properties of human endometrium-derived mesenchymal stem cells (hMESCs) during lentiviral infection. We found that the negative effect on proliferation observed during the viral infection in presence of polybrene is mediated by the polycation itself. Furthermore, we revealed that the treatment with polybrene alone led to the p38 MAPK-dependent premature senescence of hMESCs. These findings allowed us to develop an effective strategy to attenuate the negative polybrene impact on the hMESCs properties during lentiviral infection by inhibiting the activity of p38 MAPK. Importantly, the proposed approach did not attenuate the transduction efficiency of hMESCs, yet prevented polybrene-induced senescence and thereby restored the proliferation of the infected cells. These results provide the plausible means to reduce side effects of polybrene during the viral infection of primary cells, particularly MSCs.


Assuntos
Senescência Celular/genética , Terapia Genética , Células-Tronco Mesenquimais/virologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Apoptose/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/genética , Endométrio/citologia , Endométrio/efeitos dos fármacos , Endométrio/virologia , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica , Vetores Genéticos/genética , Brometo de Hexadimetrina/farmacologia , Humanos , Lentivirus/genética , Transplante de Células-Tronco Mesenquimais , Fosforilação , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Transdução Genética
20.
Stem Cell Res Ther ; 9(1): 50, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29482664

RESUMO

BACKGROUND: Asherman's syndrome (AS) is one of the gynecological disorders caused by the destruction of the endometrium. For some cases of AS available surgical methods and hormonal therapy are ineffective. Stem cell transplantation may offer a potential alternative for AS cure. METHODS: Human endometrial mesenchymal stem cells (eMSC) organized in spheroids were transplanted in rats with damaged endometrium modeled on AS. Treatment response was defined as pregnancy outcome and litter size. RESULTS: Application of eMSC in spheroids significantly improved the rat fertility with the AS model. eMSC organized in spheroids retain all properties of eMSC in monolayer: growth characteristics, expression of CD markers, and differentiation potential. Synthesis of angiogenic and anti-inflammatory factors drastically increased in eMSC assembled into spheroids. CONCLUSIONS: Human endometrial mesenchymal stem cells (eMSC) can be successfully applied for Asherman's syndrome (AS) treatment in the rat model. eMSC organized in spheroids were more therapeutically effective than the cells in monolayer. After transplantation of eMSC in spheroids the pregnancy outcome and litter size in rats with AS was higher than in rats that received autologous rat bone marrow cells. It suggests the therapeutic plausibility of heterologous eMSC in case of failure to use autologous cells.


Assuntos
Endométrio , Fertilidade , Ginatresia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Esferoides Celulares , Animais , Modelos Animais de Doenças , Endométrio/lesões , Endométrio/metabolismo , Endométrio/patologia , Feminino , Ginatresia/metabolismo , Ginatresia/patologia , Ginatresia/terapia , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Gravidez , Ratos , Ratos Wistar , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Esferoides Celulares/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA