Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 148(3): 487-501, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22304917

RESUMO

The multiprotein kinetochore complex must assemble at a specific site on each chromosome to achieve accurate chromosome segregation. Defining the nature of the DNA-protein interactions that specify the position of the kinetochore and provide a scaffold for kinetochore formation remain key goals. Here, we demonstrate that the centromeric histone-fold-containing CENP-T-W and CENP-S-X complexes coassemble to form a stable CENP-T-W-S-X heterotetramer. High-resolution structural analysis of the individual complexes and the heterotetramer reveals similarity to other histone fold-containing complexes including canonical histones within a nucleosome. The CENP-T-W-S-X heterotetramer binds to and supercoils DNA. Mutants designed to compromise heterotetramerization or the DNA-protein contacts around the heterotetramer strongly reduce the DNA binding and supercoiling activities in vitro and compromise kinetochore assembly in vivo. These data suggest that the CENP-T-W-S-X complex forms a unique nucleosome-like structure to generate contacts with DNA, extending the "histone code" beyond canonical nucleosome proteins.


Assuntos
Centrômero/química , Centrômero/metabolismo , Galinhas/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Animais , Cromatina/química , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Histonas/metabolismo , Humanos , Cinetocoros/química , Cinetocoros/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Difração de Raios X
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34408020

RESUMO

Small interfering RNAs (siRNAs) are often amplified from transcripts cleaved by RNA-induced silencing complexes (RISCs) containing a small RNA (sRNA) and an Argonaute protein. Amplified siRNAs, termed secondary siRNAs, are important for reinforcement of target repression. In plants, target cleavage by RISCs containing 22-nucleotide (nt) sRNA and Argonaute 1 (AGO1) triggers siRNA amplification. In this pathway, the cleavage fragment is converted into double-stranded RNA (dsRNA) by RNA-dependent RNA polymerase 6 (RDR6), and the dsRNA is processed into siRNAs by Dicer-like proteins. Because nonspecific RDR6 recruitment causes nontarget siRNA production, it is critical that RDR6 is specifically recruited to the target RNA that serves as a template for dsRNA formation. Previous studies showed that Suppressor of Gene Silencing 3 (SGS3) binds and stabilizes 22-nt sRNA-containing AGO1 RISCs associated with cleaved target, but how RDR6 is recruited to targets cleaved by 22-nt sRNA-containing AGO1 RISCs remains unknown. Here, using cell-free extracts prepared from suspension-cultured Arabidopsis thaliana cells, we established an in vitro system for secondary siRNA production in which 22-nt siRNA-containing AGO1-RISCs but not 21-nt siRNA-containing AGO1-RISCs induce secondary siRNA production. In this system, addition of recombinant Silencing Defective 5 (SDE5) protein remarkably enhances secondary siRNA production. We show that RDR6 is recruited to a cleavage fragment by 22-nt siRNA-containing AGO1-RISCs in coordination with SGS3 and SDE5. The SGS3-SDE5-RDR6 multicomponent recognition system and the poly(A) tail inhibition may contribute to securing specificity of siRNA amplification.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , RNA Polimerase Dependente de RNA/genética , Complexo de Inativação Induzido por RNA/genética
3.
EMBO J ; 32(3): 424-36, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23334297

RESUMO

The kinetochore forms a dynamic interface with microtubules from the mitotic spindle during mitosis. The Ndc80 complex acts as the key microtubule-binding complex at kinetochores. However, it is unclear how the Ndc80 complex associates with the inner kinetochore proteins that assemble upon centromeric chromatin. Here, based on a high-resolution structural analysis, we demonstrate that the N-terminal region of vertebrate CENP-T interacts with the 'RWD' domain in the Spc24/25 portion of the Ndc80 complex. Phosphorylation of CENP-T strengthens a cryptic hydrophobic interaction between CENP-T and Spc25 resulting in a phospho-regulated interaction that occurs without direct recognition of the phosphorylated residue. The Ndc80 complex interacts with both CENP-T and the Mis12 complex, but we find that these interactions are mutually exclusive, supporting a model in which two distinct pathways target the Ndc80 complex to kinetochores. Our results provide a model for how the multiple protein complexes at kinetochores associate in a phospho-regulated manner.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Animais , Calorimetria , Linhagem Celular Tumoral , Galinhas , Cromatografia em Gel , Proteínas Cromossômicas não Histona/química , Cristalização , Proteínas do Citoesqueleto , Humanos , Cinetocoros/química , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/química , Complexos Multiproteicos/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Especificidade da Espécie
4.
Mol Cell ; 33(6): 763-74, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19328069

RESUMO

Cohesin's Smc1, Smc3, and Scc1 subunits form a tripartite ring that entraps sister DNAs. Scc3, Pds5, and Rad61 (Wapl) are regulatory subunits that control this process. We describe here smc3, scc3, pds5, and rad61 mutations that permit yeast cell proliferation and entrapment of sister DNAs by cohesin rings in the absence of Eco1, an acetyl transferase normally essential for establishing sister chromatid cohesion. The smc3 mutations cluster around and include a highly conserved lysine (K113) close to Smc3's ATP-binding pocket, which, together with K112, is acetylated by Eco1. Lethality caused by mutating both residues to arginine is suppressed by the scc3, pds5, and rad61 mutants. Scc3, Pds5, and Rad61 form a complex and inhibit entrapment of sister DNAs by a process involving the "K112/K113" surface on Smc3's ATPase. According to this model, Eco1 promotes sister DNA entrapment partly by relieving an antiestablishment activity associated with Scc3, Pds5, and Rad61.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Western Blotting , Proliferação de Células , Proteoglicanas de Sulfatos de Condroitina/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , Dados de Sequência Molecular , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Coesinas
5.
Nucleic Acids Res ; 42(3): 1644-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24234442

RESUMO

The centromere is a specific genomic region upon which the kinetochore is formed to attach to spindle microtubules for faithful chromosome segregation. To distinguish this chromosomal region from other genomic loci, the centromere contains a specific chromatin structure including specialized nucleosomes containing the histone H3 variant CENP-A. In addition to CENP-A nucleosomes, we have found that centromeres contain a nucleosome-like structure comprised of the histone-fold CENP-T-W-S-X complex. However, it is unclear how the CENP-T-W-S-X complex associates with centromere chromatin. Here, we demonstrate that the CENP-T-W-S-X complex binds preferentially to ∼ 100 bp of linker DNA rather than nucleosome-bound DNA. In addition, we find that the CENP-T-W-S-X complex primarily binds to DNA as a (CENP-T-W-S-X)2 structure. Interestingly, in contrast to canonical nucleosomes that negatively supercoil DNA, the CENP-T-W-S-X complex induces positive DNA supercoils. We found that the DNA-binding regions in CENP-T or CENP-W, but not CENP-S or CENP-X, are required for this positive supercoiling activity and the kinetochore targeting of the CENP-T-W-S-X complex. In summary, our work reveals the structural features and properties of the CENP-T-W-S-X complex for its localization to centromeres.


Assuntos
Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Super-Helicoidal/metabolismo , Animais , Linhagem Celular , Galinhas , Proteínas Cromossômicas não Histona/química , DNA/metabolismo , Cinetocoros/metabolismo , Nucleossomos/metabolismo
6.
Nucleic Acids Res ; 41(12): 6149-60, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23620281

RESUMO

Cohesin plays a critical role in sister chromatid cohesion, double-stranded DNA break repair and regulation of gene expression. However, the mechanism of how cohesin directly interacts with DNA remains unclear. We report single-molecule experiments analyzing the interaction of the budding yeast cohesin Structural Maintenance of Chromosome (SMC)1-SMC3 heterodimer with naked double-helix DNA. The cohesin heterodimer is able to compact DNA molecules against applied forces of 0.45 pN, via a series of extension steps of a well-defined size ≈130 nm. This reaction does not require ATP, but is dependent on DNA supercoiling: DNA with positive torsional stress is compacted more quickly than negatively supercoiled or nicked DNAs. Un-nicked torsionally relaxed DNA is a poor substrate for the compaction reaction. Experiments with mutant proteins indicate that the dimerization hinge region is crucial to the folding reaction. We conclude that the SMC1-SMC3 heterodimer is able to restructure the DNA double helix into a series of loops, with a preference for positive writhe.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Super-Helicoidal/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , DNA Super-Helicoidal/química , Dimerização , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estrutura Terciária de Proteína , Deleção de Sequência
7.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 5): 193-199, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35506764

RESUMO

The CENP-SX (MHF) complex is a conserved histone-fold protein complex that is involved in chromosome segregation and DNA repair. It can bind to DNA on its own as well as in complex with other proteins such as CENP-TW and FANCM to recognize specific substrates. CENP-SX binds nonspecifically to dsDNA, similar to other histone-fold proteins. Several low-resolution structures of CENP-SX in complex with DNA are known, but a high-resolution structure is still lacking. The DNA-binding properties of CENP-SX and FANCM-CENP-SX complexes with various lengths of dsDNA were compared and the band-shift patterns and migration positions were found to differ. To confirm the DNA-binding properties in detail, CENP-SX-DNA and FANCM-CENP-SX-DNA complexes were crystallized. Analysis of the crystals revealed that they all contained the CENP-SX-DNA complex, irrespective of the complex that was used in crystallization. Detailed diffraction data analyses revealed that there were two types of crystal with different space groups, P21 and C2, where the volume of the P21 asymmetric unit is twice as large as that of the C2 asymmetric unit. Analysis of the self-rotation function revealed the presence of twofold and fourfold symmetry in both crystals. This suggests that there may be multiple molecules of CENP-SX and DNA within the asymmetric unit with respective symmetry. Structure determination of the present crystals should reveal details of the DNA-binding properties of CENP-SX.


Assuntos
DNA , Histonas , Cristalização , Cristalografia por Raios X , DNA/química , Proteínas de Ligação a DNA/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-34199401

RESUMO

The policies regarding the elderly in advanced countries are based on the notion of 'ageing in place'. The question arises, where and how extensive can the 'place' be? Is there a method of estimating a senior's living area? The purpose of this study was to determine the common characteristics of the living areas of seniors in three small and medium-sized Japanese cities. The basic methodology involved a comparative analysis involving these cities. We used case studies to cross tabulate interviews regarding the daily outings of participants, some of whom needed long-term care while others did not. The data covered a total of 727 participants, 307 of whom needed long-term care and 420 requiring none. Comparative analysis revealed the common characteristics of living areas for seniors in these cities, i.e., two-layered living areas of healthy seniors; fewer outings on foot due to frailty; the average moving time via transportation is approximately 12 min; and living areas overlap districts where hospitals and stores are located. The results indicate that we can roughly estimate the living areas of seniors in any neighborhood to investigate accessibility to nearby hospitals and stores.


Assuntos
Envelhecimento , Vida Independente , Idoso , Cidades , Humanos , Japão , Características de Residência
9.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 1): 1-7, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439149

RESUMO

FANCM is involved in eukaryotic DNA-damage recognition and activates the Fanconi anemia (FA) pathway through complex formation. MHF is one of the FANCM-associating components and contains a histone-fold DNA-binding domain. Loss of the FANCM-MHF interaction compromises the activation of the FA pathway, resulting in chromosomal instability. Thus, formation of the FANCM-MHF complex is important for function, but its nature largely remains elusive. Here, the aim was to reveal the molecular and structural basis for the stability of the FANCM-MHF complex. A recombinant tripartite complex containing chicken FANCM (MHF interaction region), MHF1 and MHF2 was expressed and purified. The purified tripartite complex was crystallized under various conditions and three different crystals were obtained from similar crystallization conditions. Unexpectedly, structure determination revealed that one of the crystals contained the FANCM-MHF complex but that the other two contained the MHF complex without FANCM. How FANCM dissociates from MHF was further investigated and it was found that the presence of 2-methyl-2,4-pentanediol (MPD) and an oxidative environment may have promoted its release. However, under these conditions MHF retained its complexed form. FANCM-MHF interaction involves a mixture of hydrophobic/hydrophilic interactions, and chicken FANCM contains several nonconserved cysteines within this region which may lead to aggregation with other FANCM-MHF molecules. These results indicate an unexpected nature of the FANCM-MHF complex and the data can be used to improve the stability of the complex for biochemical and structural analyses.


Assuntos
Complexos Multiproteicos/química , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Galinhas , Cristalografia por Raios X , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Glicóis/química , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Conformação Proteica , Estabilidade Proteica
10.
Acta Crystallogr D Struct Biol ; 76(Pt 10): 993-1000, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021501

RESUMO

Vasohibins regulate angiogenesis, tumor growth, metastasis and neuronal differentiation. They form a complex with small vasohibin-binding protein (SVBP) and show tubulin tyrosine carboxypeptidase activity. Recent crystal structure determinations of vasohibin-SVBP complexes have provided a molecular basis for complex formation, substrate binding and catalytic activity. However, the regulatory mechanism and dynamics of the complex remain elusive. Here, the crystal structure of the VASH1-SVBP complex and a molecular-dynamics simulation study are reported. The overall structure of the complex was similar to previously reported structures. Importantly, however, the structure revealed a domain-swapped heterotetramer that was formed between twofold symmetry-related molecules. This heterotetramerization was stabilized by the mutual exchange of ten conserved N-terminal residues from the VASH1 structural core, which was intramolecular in other structures. Interestingly, a comparison of this region with previously reported structures revealed that the patterns of hydrogen bonding and hydrophobic interactions vary. In the molecular-dynamics simulations, differences were found between the heterotetramer and heterodimer, where the fluctuation of the N-terminal region in the heterotetramer was suppressed. Thus, heterotetramer formation and flexibility of the N-terminal region may be important for enzyme activity and regulation.


Assuntos
Proteínas de Transporte/química , Proteínas de Ciclo Celular/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica
11.
Curr Biol ; 16(20): 1998-2008, 2006 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-17055978

RESUMO

BACKGROUND: Cohesin, a multisubunit protein complex conserved from yeast to humans, holds sister chromatids together from the onset of replication to their separation during anaphase. Cohesin consists of four core subunits, namely Smc1, Smc3, Scc1, and Scc3. Smc1 and Smc3 proteins are characterized by 50-nm-long anti-parallel coiled coils flanked by a globular hinge domain and an ABC-like ATPase head domain. Whereas Smc1 and Smc3 heterodimerize via their hinge domains, the kleisin subunit Scc1 connects their ATPase heads, and this results in the formation of a large ring. Biochemical studies suggest that cohesin might trap sister chromatids within its ring, and genetic evidence suggests that ATP hydrolysis is required for the stable association of cohesin with chromosomes. However, the precise role of the ATPase domains remains enigmatic. RESULTS: Characterization of cohesin's ATPase activity suggests that hydrolysis depends on the binding of ATP to both Smc1 and Smc3 heads. However, ATP hydrolysis at the two active sites is not per se cooperative. We show that the C-terminal winged-helix domain of Scc1 stimulates the ATPase activity of the Smc1/Smc3 heterodimer by promoting ATP binding to Smc1's head. In contrast, we do not detect any effect of Scc1's N-terminal domain on Smc1/Smc3 ATPase activity. CONCLUSIONS: Our studies reveal that Scc1 not only connects the Smc1 and Smc3 ATPase heads but also regulates their ATPase activity.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Chaperonas Moleculares/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Transportadoras de Cálcio/isolamento & purificação , Proteínas de Ciclo Celular/isolamento & purificação , Proteoglicanas de Sulfatos de Condroitina/isolamento & purificação , Proteínas Cromossômicas não Histona/isolamento & purificação , Clonagem Molecular , Dimerização , Vetores Genéticos/genética , Modelos Moleculares , Chaperonas Moleculares/isolamento & purificação , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
12.
Curr Opin Struct Biol ; 16(1): 60-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16439110

RESUMO

Structure-specific DNA nucleases play important roles in various DNA transactions such as DNA replication, repair and recombination. These enzymes recognize loops and branched DNA structures. Recent structural studies have provided detailed insights into the functions of these enzymes. Structures of Holliday junction resolvase revealed that nucleases are broadly diverged in the way in which they fold, however, are required to form homodimers with large basic patches of protein surfaces, which are complementary to DNA tertiary structures. Many nucleases maintain structure-specific recognition modes, which involve particular domain arrangements through conformal changes of flexible loops or have a separate DNA binding domain. Nucleases, such as FEN-1 and archaeal XPF, are bound to proliferating cell nuclear antigen through a common motif, and thereby actualize their inherent activities.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Endonucleases Flap/química , Endonucleases Flap/fisiologia , Resolvases de Junção Holliday/química , Resolvases de Junção Holliday/fisiologia , Archaea/enzimologia , Archaea/genética , Bactérias/enzimologia , Bactérias/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-29534021

RESUMO

The 2013 Partial Amendment of the Disaster Countermeasures Basic Law mandated that a roster of vulnerable persons during disasters be created, and further development of evacuation support is expected. In this study, the number of vulnerable people living in target analytical areas are identified in terms of neighborhood units by using the National Health Insurance Database to create a realistic and efficient evacuation support plan. Later, after considering the "vulnerability" of an area to earthquake disaster damage, a quantitative evaluation of the state of the disaster is performed using a principle component analysis that further divided the analytical target areas into neighborhood units to make a detailed determination of the number of disaster-vulnerable persons, the severity of the disaster, etc. The results of the disaster evaluation performed after considering the vulnerability of an area are that 628 disaster-vulnerable persons live in areas with a relatively higher disaster evaluation value.


Assuntos
Desastres , Características de Residência/estatística & dados numéricos , Populações Vulneráveis/estatística & dados numéricos , Cidades/estatística & dados numéricos , Estudos Transversais , Planejamento em Desastres/métodos , Terremotos , Humanos , Japão , Programas Nacionais de Saúde
14.
Structure ; 13(8): 1183-92, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16084390

RESUMO

XPF/Rad1/Mus81/Hef proteins recognize and cleave branched DNA structures. XPF and Rad1 proteins cleave the 5' side of nucleotide excision repair bubble, while Mus81 and Hef cleave similar sites of the nicked Holliday junction, fork, or flap structure. These proteins all function as dimers and consist of catalytic and helix-hairpin-helix DNA binding (HhH) domains. We have determined the crystal structure of the HhH domain of Pyrococcus furiosus Hef nuclease (HefHhH), which revealed the distinct mode of protein dimerization. Our structural and biochemical analyses also showed that each of the catalytic and HhH domains binds to distinct regions within the fork-structured DNA: each HhH domain from two separate subunits asymmetrically binds to the arm region, while the catalytic domain binds near the junction center. Upon binding to DNA, Hef nuclease disrupts base pairs near the cleavage site. It is most likely that this bipartite binding mode is conserved in the XPF/Rad1/Mus81 nuclease family.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Endonucleases/química , Endonucleases/fisiologia , Pyrococcus furiosus/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Análise Mutacional de DNA , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Dados de Sequência Molecular , Família Multigênica , Mutação , Estrutura Terciária de Proteína , Pyrococcus furiosus/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Structure ; 13(1): 143-53, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15642269

RESUMO

DNA and RNA frequently form various branched intermediates that are important for the transmission of genetic information. Helicases play pivotal roles in the processing of these transient intermediates during nucleic acid metabolism. The archaeal Hef helicase/ nuclease is a representative protein that processes flap- or fork-DNA structures, and, intriguingly, its C-terminal half belongs to the XPF/Mus81 nuclease family. Here, we report the crystal structure of the helicase domain of the Hef protein from Pyrococcus furiosus. The structure reveals a novel helical insertion between the two conserved helicase core domains. This positively charged extra region, structurally similar to the "thumb" domain of DNA polymerase, plays critical roles in fork recognition. The Hef helicase/nuclease exhibits sequence similarity to the Mph1 helicase from Saccharomyces cerevisiae; XPF/Rad1, involved in DNA repair; and a putative Hef homolog identified in mammals. Hence, our findings provide a structural basis for the functional mechanisms of this helicase/nuclease family.


Assuntos
Proteínas Arqueais/fisiologia , DNA Helicases/metabolismo , DNA/química , DNA/metabolismo , Pyrococcus furiosus/enzimologia , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Cristalografia por Raios X , DNA Helicases/química , DNA Helicases/genética , Análise Mutacional de DNA , DNA Polimerase Dirigida por DNA/química , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fosfatos/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Análise Espectral Raman
16.
Artigo em Inglês | MEDLINE | ID: mdl-29194405

RESUMO

As the Asian country with the most aged population, Japan, has been modifying its social welfare system. In 2000, the Japanese social care vision turned towards meeting the elderly's care needs in their own homes with proper formal care services. This study aims to understand the quantitative properties of the macro supply and demand structure for facilities for the elderly who require support or long-term care throughout Japan and present them as index values. Additionally, this study compares the targets for establishing long-term care facilities set by Japan's Ministry of Health, Labor and Welfare for 2025. In 2014, approximately 90% of all the people who were certified as requiring support and long-term care and those receiving preventive long-term care or long-term care services, were 75 years or older. The target increases in the number of established facilities by 2025 (for the 75-years-or-older population) were calculated to be 3.3% for nursing homes; 2.71% for long-term-care health facilities; 1.7% for group living facilities; and, 1.84% for community-based multi-care facilities. It was revealed that the establishment targets for 2025 also increase over current projections with the expected increase of the absolute number of users of group living facilities and community-based multi-care facilities. On the other hand, the establishment target for nursing homes remains almost the same as the current projection, whereas that for long-term-care health facilities decreases. These changes of facility ratios reveal that the Japanese social care system is shifting to realize 'Ageing in Place'. When considering households' tendencies, the target ratios for established facilities are expected to be applied to the other countries in Asia.


Assuntos
Necessidades e Demandas de Serviços de Saúde , Instituições Residenciais/provisão & distribuição , Idoso , Feminino , Humanos , Seguro de Assistência de Longo Prazo , Japão , Assistência de Longa Duração/tendências , Masculino
17.
Artigo em Inglês | MEDLINE | ID: mdl-28937659

RESUMO

Social welfare and public health departments require reliable assessments to enhance the rationality of phased construction of special elderly nursing homes (SENHs). This paper aims to assess the allocation of SENHs based on a beds-needed index for SENHs (BNIS). This may help departments determine the priority for approving locations of SENHs more accurately with a limited budget. Traditional assessments in Tokyo use the sphere of welfare, ward, and sphere of daily life as spatial units for estimating beds-to-elderly population ratios. We calculate the BNIS by introducing a parameter-improved floating catchment area method (PI-FCA) at a smaller spatial unit, the Chome. In the PI-FCA, the catchment area is generated according to the standard of average population served by SENHs and capacity, the population demand is the population of the elderly requiring care levels 3-5 and is further modified by a coefficient of potential demand via building a multivariate linear model. Improved results were obtained using the PI-FCA. Finally, this study maps the distribution of the degree of BNIS, to provide a basis for the allocation assessment of SENHs. This caters to the needs of departments and is easily applicable in other public healthcare facilities.


Assuntos
Instituição de Longa Permanência para Idosos/organização & administração , Avaliação das Necessidades/organização & administração , Casas de Saúde/organização & administração , Idoso , Idoso de 80 Anos ou mais , Área Programática de Saúde , Feminino , Humanos , Masculino , Tóquio
18.
Structure ; 11(4): 445-57, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12679022

RESUMO

The XPF/Rad1/Mus81-dependent nuclease family specifically cleaves branched structures generated during DNA repair, replication, and recombination, and is essential for maintaining genome stability. Here, we report the domain organization of an archaeal homolog (Hef) of this family and the X-ray crystal structure of the middle domain, with the nuclease activity. The nuclease domain architecture exhibits remarkable similarity to those of restriction endonucleases, including the correspondence of the GDX(n)ERKX(3)D signature motif in Hef to the PDX(n)(E/D)XK motif in restriction enzymes. This structural study also suggests that the XPF/Rad1/Mus81/ERCC1 proteins form a dimer through each interface of the nuclease domain and the helix-hairpin-helix domain. Simultaneous disruptions of both interfaces result in their dissociation into separate monomers, with strikingly reduced endonuclease activities.


Assuntos
Proteínas Arqueais/química , Proteínas de Ligação a DNA/química , Endonucleases/química , Conformação Proteica , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Endonucleases/genética , Endonucleases/metabolismo , Humanos , Metais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
19.
Methods Mol Biol ; 1413: 135-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27193847

RESUMO

The kinetochore connects chromosomes to microtubules during mitosis and therefore plays an essential role in faithful chromosome segregation. It is built at the centromeric region of the chromosome and is comprised of many protein complexes. CENP-S, -T, -W, and -X are kinetochore components with histone-folds. These proteins play important roles in establishment of kinetochore chromatin. Similar to canonical histones, these kinetochore histone-fold proteins form heteromeric complexes (CENP-S/CENP-X complex and CENP-T/CENP-W complex) and bind DNA in sequence independent manner. In addition, they form a CENP-T-W-S-X heterotetrameric complex and bind DNA in a manner that is different from both CENP-S-X and CENP-T-W. To understand how kinetochores form and function it is necessary to characterize the components in detail. Here, we describe our approaches in purification and characterization of the kinetochore histone-fold complexes.


Assuntos
Histonas/química , Histonas/metabolismo , Cinetocoros/química , Cinetocoros/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Dobramento de Proteína , Centrômero/metabolismo , Cromatina/metabolismo , Segregação de Cromossomos , DNA/metabolismo , Complexos Multiproteicos/isolamento & purificação , Ligação Proteica , Desnaturação Proteica , Mapeamento de Interação de Proteínas , Redobramento de Proteína , Relação Estrutura-Atividade
20.
Oncogene ; 21(58): 9022-32, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12483517

RESUMO

DNA nucleases catalyze the cleavage of phosphodiester bonds. These enzymes play crucial roles in various DNA repair processes, which involve DNA replication, base excision repair, nucleotide excision repair, mismatch repair, and double strand break repair. In recent years, new nucleases involved in various DNA repair processes have been reported, including the Mus81 : Mms4 (Eme1) complex, which functions during the meiotic phase and the Artemis : DNA-PK complex, which processes a V(D)J recombination intermediate. Defects of these nucleases cause genetic instability or severe immunodeficiency. Thus, structural biology on various nuclease actions is essential for the elucidation of the molecular mechanism of complex DNA repair machinery. Three-dimensional structural information of nucleases is also rapidly accumulating, thus providing important insights into the molecular architectures, as well as the DNA recognition and cleavage mechanisms. This review focuses on the three-dimensional structure-function relationships of nucleases crucial for DNA repair processes.


Assuntos
Reparo do DNA/fisiologia , Desoxirribonucleases/química , Desoxirribonucleases/fisiologia , Endonucleases , Proteínas de Saccharomyces cerevisiae , Animais , Pareamento Incorreto de Bases , Sítios de Ligação , DNA/genética , DNA/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/química , Desoxirribonucleases/classificação , Endonucleases Flap , Humanos , Conformação Proteica , Recombinases , Ribonuclease H/química , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Transposases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA