Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arch Biochem Biophys ; 494(1): 32-9, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19919822

RESUMO

Although quinones have been the subject of great interest as possible antimalarial agents, the mechanism of their antimalarial activity is poorly understood. Flavoenzyme electrontransferase-catalyzed redox cycling of quinones, and their inhibition of the antioxidant flavoenzyme glutathione reductase (GR, EC 1.8.1.7) have been proposed as possible mechanisms. Here, we have examined the activity of a number of quinones, including the novel antitumor agent RH1, against the malaria parasite Plasmodium falciparum strain FcB1 in vitro, their single-electron reduction rates by P. falciparum ferredoxin:NADP(+) reductase (PfFNR, EC 1.18.1.2), and their ability to inhibit P. falciparum GR. The multiparameter statistical analysis of our data implies, that the antiplasmodial activity of fully-substituted quinones (n=15) is relatively independent from their one-electron reduction potential (E(7)(1)). The presence of aziridinyl groups in quinone ring increased their antiplasmodial activity. Since aziridinyl-substituted quinones do not possess enhanced redox cycling activity towards PfFNR, we propose that they could act as as DNA-alkylating agents after their net two-electron reduction into aziridinyl-hydroquinones. We found that under the partial anaerobiosis, i.e., at the oxygen concentration below 40-50 microM, this reaction may be carried out by single-electron transferring flavoenzymes present in P. falciparum, like PfFNR. Another parameter increasing the antiplasmodial activity of fully-substituted quinones is an increase in their potency as P. falciparum GR inhibitors, which was revealed using multiparameter regression analysis. To our knowledge, this is the first quantitative demonstration of a link between the antiplasmodial activity of compounds and GR inhibition.


Assuntos
Aziridinas/química , Inibidores Enzimáticos/farmacologia , Glutationa Redutase/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Quinonas/farmacologia , Animais , Inibidores Enzimáticos/química , Eritrócitos/enzimologia , Glutationa Redutase/sangue , Humanos , Cinética , Plasmodium falciparum/efeitos dos fármacos , Quinonas/química , Análise de Regressão
2.
Int J Food Microbiol ; 116(1): 153-8, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17350127

RESUMO

Nowadays, there is a growing interest in natural, minimally processed, nutritional and healthy foods. Sprouted seeds can be offered as natural nutritive products. Regrettably, existing seed decontamination technologies are limited and have specific disadvantages. 5-aminolevulinic acid (5-ALA) as a novel and effective tool for wheat decontamination from microfungi is proposed in this work. Inhibition of wheat with 5-ALA revealed a drastically suppressed development of microfungi. Studies of wheat germination characteristics showed that 5-ALA stimulates the growth of wheat seedlings and roots without impairing the vigor of germination and the viability of seeds. 5-ALA also induces either marginal or significant activities of antioxidant enzymes which can be associated with enhanced cellular capacity to detoxify reactive oxygen species. The results indicate that 5-ALA application may be an effective, environmentally friendly and inexpensive technology to be used in producing sprouts for human consumption.


Assuntos
Ácido Aminolevulínico/farmacologia , Contaminação de Alimentos/prevenção & controle , Fungos/efeitos dos fármacos , Triticum/microbiologia , Qualidade de Produtos para o Consumidor , Fungos/crescimento & desenvolvimento , Germinação , Valor Nutritivo , Fármacos Fotossensibilizantes/farmacologia , Sementes/enzimologia , Sementes/microbiologia , Triticum/enzimologia
3.
Z Naturforsch C J Biosci ; 61(11-12): 889-95, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17294702

RESUMO

The geno- and cytotoxicity of chromate, an important environmental pollutant, is partly attributed to the flavoenzyme-catalyzed reduction with the concomitant formation of reactive oxygen species. The aim of this work was to characterize the role of NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC 1.6.99.2) and glutathione reductase (GR, EC 1.6.4.2) in the mammalian cell cytotoxicity of chromate, which was evidenced controversially so far. The chromate reductase activity of NQO1 was higher than that of GR, but lower than that of lipoamide dehydrogenase (EC 1.6.4.3), ferredoxin:NADP+ reductase (EC 1.18.1.2), and NADPH: cytochrome P-450 reductase (EC 1.6.2.4). The reduction of chromate by NQO1 was accompanied by the formation of reactive oxygen species. The concentration of chromate for 50% survival of bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) during a 24-h incubation was (22 +/- 4) microM. The cytotoxicity was partly prevented by desferrioxamine, the antioxidant N,N'-diphenyl-p-phenylene diamine and by an inhibitor of NQO1, dicumarol, and potentiated by 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU), which inactivates GR. The NADPH-dependent chromate reduction by digitonin-permeabilized FLK cells was partly inhibited by dicumarol and not affected by BCNU. Taken together, these data indicate that the oxidative stress-type cytotoxicity of chromate in FLK cells may be partly attributed to its reduction by NQO1, but not by GR. The effect of BCNU on the chromate cytotoxicity may indicate that the general antioxidant action of reduced glutathione is more important than its prooxidant activities arising from the reactions with chromate.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Cromatos/toxicidade , Glutationa Redutase/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Animais , Linhagem Celular , Cinética , Mamíferos , NAD/metabolismo , NADP/metabolismo , Oxidantes/toxicidade , Oxirredução
4.
Z Naturforsch C J Biosci ; 57(9-10): 822-7, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12440719

RESUMO

In order to assess the role of oxidative stress in the cytotoxicity of natural hydroxyanthraquinones, we compared rhein, emodin, danthron, chrysophanol, and carminic acid, and a series of model quinones with available values of single-electron reduction midpoint potential at pH 7.0 (E(1)7), with respect to their reactivity in the single-electron enzymatic reduction, and their mammalian cell toxicity. The toxicity of model quinones to the bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK), and HL-60, a human promyelocytic leukemia cell line, increased with an increase in their E(1)7. A close parallelism was found between the reactivity of hydroxyanthraquinones and model quinones with single-electron transferring flavoenzymes ferredoxin: NADP+ reductase and NADPH:cytochrome P450 reductase, and their cytotoxicity. This points to the importance of oxidative stress in the toxicity of hydroxyanthraquinones in these cell lines, which was further evidenced by the protective effects of desferrioxamine and the antioxidant N,N'-diphenyl-p-phenylene diamine, by the potentiating effects of 1,3-bis-(2-chloroethyl)-1-nitrosourea, and an increase in lipid peroxidation.


Assuntos
Antraquinonas/toxicidade , Carmim/análogos & derivados , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Animais , Carmim/toxicidade , Linhagem Celular , Transporte de Elétrons , Emodina/toxicidade , Fibroblastos/efeitos dos fármacos , Células HL-60 , Humanos , Mamíferos , Oxigenases de Função Mista/toxicidade , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Ovinos , Relação Estrutura-Atividade
5.
Acta Biochim Pol ; 61(4): 833-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566548

RESUMO

The anticancer activity of aziridinyl-quinones is mainly attributed to their NAD(P)H: quinone oxidoreductase 1 (NQO1)-catalyzed two-electron reduction into DNA-alkylating products. However, little is known about their cytotoxicity in primary cells, which may be important in understanding their side effects. We found that the cytotoxicity of aziridinyl-unsubstituted quinones (n = 12) in mice splenocytes with a low amount of NQO1, 4 nmol × mg(-1) × min(-1), was caused mainly by the oxidative stress. Aziridinyl-benzoquinones (n = 6) including a novel anticancer agent RH1 were more cytotoxic than aziridinyl-unsubstituted ones with the similar redox properties, and their cytotoxicity was not decreased by an inhibitor of NQO1, dicumarol. The possible reasons for their enhanced cytotoxicity are discussed.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/química , Benzoquinonas/efeitos adversos , Benzoquinonas/química , Baço/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Baço/citologia
6.
Acta Biochim Pol ; 60(2): 217-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23748219

RESUMO

We examined the kinetics of single-electron reduction of a large number of structurally diverse quinones and nitroaromatic compounds, including a number of antitumour and antiparasitic drugs, and nitroaromatic explosives by recombinant rat neuronal nitric oxide synthase (nNOS, EC 1.14.13.39), aiming to characterize the role of nNOS in the oxidative stress-type cytotoxicity of the above compounds. The steady-state second-order rate constants (kcat/Km) of reduction of the quinones and nitroaromatics varied from 10² M⁻¹s⁻¹ to 106 M⁻¹s⁻¹, and increased with an increase in their single-electron reduction potentials (E¹7). The presence of Ca²âº/calmodulin enhanced the reactivity of nNOS. These reactions were consistent with an 'outer sphere' electron-transfer mechanism, considering the FMNH∙/FMNH2 couple of nNOS as the most reactive reduced enzyme form. An analysis of the reactions of nNOS within the 'outer sphere' electron-transfer mechanism gave the approximate values of the distance of electron transfer, 0.39-0.47 nm, which are consistent with the crystal structure of the reductase domain of nNOS. On the other hand, at low oxygen concentrations ([O2] = 40-50 µM), nNOS performs a net two-electron reduction of quinones and nitroaromatics. This implies that NOS may in part be responsible for the bioreductive alkylation by two-electron reduced forms of antitumour aziridinyl-substituted quinones under a modest hypoxia.


Assuntos
Aziridinas/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Quinonas/metabolismo , Xenobióticos/metabolismo , Animais , Benzoquinonas/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Transporte de Elétrons , Cinética , Nitrocompostos/metabolismo , Oxirredução , Relação Quantitativa Estrutura-Atividade , Ratos , Proteínas Recombinantes/metabolismo
8.
FEBS J ; 275(24): 6192-203, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19016851

RESUMO

Enterobacter cloacae PB2 NADPH:pentaerythritol tetranitrate reductase (PETNR) performs the biodegradation of explosive organic nitrate esters via their reductive denitration. In order to understand the enzyme substrate specificity, we have examined the reactions of PETNR with organic nitrates (n = 15) and their nitrogen analogues, N-nitramines (n = 4). The reactions of these compounds with PETNR were accompanied by the release of 1-2 mol of nitrite per mole of compound, but were not accompanied by their redox cycling and superoxide formation. The reduction rate constants (k(cat)/K(m)) of inositol hexanitrate, diglycerol tetranitrate, erythritol tetranitrate, mannitol hexanitrate and xylitol pentanitrate were similar to those of the established PETNR substrates, PETN and glycerol trinitrate, whereas the reactivities of hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine were three orders of magnitude lower. The log k(cat)/K(m) value of the compounds increased with a decrease in the enthalpy of formation of the hydride adducts [DeltaH(f)(R-O-N(OH)O(-)) or DeltaH(f)(R(1),R(2) > N-N(OH)O(-))], and with an increase in their lipophilicity (octanol/water partition coefficient, log P(ow)), and did not depend on their van der Waals' volumes. Hydrophobic organic nitroesters and hydrophilic N-nitramines compete for the same binding site in the reduced enzyme form. The role of the hydrophobic interaction of PETNR with glycerol trinitrate was supported by the positive dependence of glycerol trinitrate reactivity on the solution ionic strength. The discrimination of nitroesters and N-nitramines according to their log P(ow) values seems to be a specific feature of the Old Yellow Enzyme family of flavoenzymes.


Assuntos
Compostos de Anilina/metabolismo , Enterobacter cloacae/metabolismo , Nitrocompostos/metabolismo , Nitrobenzenos/metabolismo , Oxirredutases/metabolismo , Azocinas/metabolismo , Proteínas de Bactérias/metabolismo , Cinética , NADP/metabolismo , Nitratos/metabolismo , Nitroglicerina/metabolismo , Oxirredução , Especificidade por Substrato
9.
J Biol Chem ; 281(9): 5593-603, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16354662

RESUMO

Here we described novel interactions of the mammalian selenoprotein thioredoxin reductase (TrxR) with nitroaromatic environmental pollutants and drugs. We found that TrxR could catalyze nitroreductase reactions with either one- or two-electron reduction, using its selenocysteine-containing active site and another redox active center, presumably the FAD. Tetryl and p-dinitrobenzene were the most efficient nitroaromatic substrates with a k(cat) of 1.8 and 2.8 s(-1), respectively, at pH 7.0 and 25 degrees C using 50 muM NADPH. As a nitroreductase, TrxR cycled between four- and two-electron-reduced states. The one-electron reactions led to superoxide formation as detected by cytochrome c reduction and, interestingly, reductive N-denitration of tetryl or 2,4-dinitrophenyl-N-methylnitramine, resulting in the release of nitrite. Most nitroaromatics were uncompetitive and noncompetitive inhibitors with regard to NADPH and the disulfide substrate 5,5'-dithiobis(2-nitrobenzoic acid), respectively. Tetryl and 4,6-dinitrobenzofuroxan were, however, competitive inhibitors with respect to 5,5'-dithiobis(2-nitrobenzoic acid) and were clearly substrates for the selenolthiol motif of the enzyme. Furthermore, tetryl and 4,6-dinitrobenzofuroxan efficiently inactivated TrxR, likely by alkylation of the selenolthiol motif as in the inhibition of TrxR by 1-chloro-2,4-dinitrobenzene/dinitrochlorobenzene (DNCB) or juglone. The latter compounds were the most efficient inhibitors of TrxR activity in a cellular context. DNCB, juglone, and tetryl were highly cytotoxic and induced caspase-3/7 activation in HeLa cells. Furthermore, DNCB and juglone were potent inducers of apoptosis also in Bcl2 overexpressing HeLa cells or in A549 cells. Based on these findings, we suggested that targeting of intracellular TrxR by alkylating nitroaromatic or quinone compounds may contribute to the induction of apoptosis in exposed human cancer cells.


Assuntos
Apoptose/fisiologia , Dinitrobenzenos/metabolismo , Neoplasias/metabolismo , Compostos de Nitrogênio/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Animais , Sítios de Ligação , Caspase 3 , Caspase 7 , Caspases/metabolismo , Linhagem Celular Tumoral , Dinitrobenzenos/química , Ácido Ditionitrobenzoico/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Humanos , Estrutura Molecular , Naftoquinonas/metabolismo , Neoplasias/patologia , Compostos de Nitrogênio/química , Oxirredução , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reagentes de Sulfidrila/metabolismo , Superóxidos/metabolismo , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/genética
10.
Arch Biochem Biophys ; 416(1): 110-8, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12859987

RESUMO

It is supposed that the main cytotoxicity mechanism of antitumour aziridinyl-substituted benzoquinones is their two-electron reduction to alkylating products by NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC 1.6.99.2). However, other possible cytotoxicity mechanisms, e.g., oxidative stress, are studied insufficiently. In the single-electron reduction of quinones including a novel compound RH1 (2,5-diaziridinyl- 3-(hydroxymethyl)-6-methyl-1,4-benzoquinone), by NADPH:cytochrome P-450 reductase (EC 1.6.2.4, P-450R), their reactivity increased with an increase in the redox potential of quinone/semiquinone couple (E(1)7), reaching a limiting value at E(1)7> or =-0.1V. The reactivity of quinones towards NQO1 did not depend on their E(1)7. The cytotoxicity of aziridinyl-unsubstituted quinones in bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) mimics their reactivity in P-450R-catalyzed reactions, exhibiting a parabolic dependence on their E(1)7. The toxicity of aziridinyl-benzoquinones, although being higher, also followed this trend and did not depend on their reactivity towards NQO1. The action of aziridinylbenzoquinones in FLK cells was accompanied by an increase in lipid peroxidation, their toxicity decreased by desferrioxamine and the antioxidant N,N'-diphenyl-p-phenylene diamine, and potentiated by 1,3-bis-(2-chloroethyl)-1-nitrosourea. The inhibitor of NQO1, dicumarol, protected against the toxicity of aziridinyl-benzoquinones except of 2,5-bis-(2'-hydroxyethylamino)-3,6-diaziridinyl-1,4-benzoquinone (BZQ), which was almost inactive as NQO1 substrate. The same events except the absence of pronounced effect of dicumarol were characteristic in the cytotoxicity of aziridinyl-unsubstituted quinones. These findings indicate that in addition to the activation by NQO1, the oxidative stress presumably initiated by single-electron transferring enzymes may be an important factor in the cytotoxicity of aziridinylbenzoquinones. The information obtained may contribute to the understanding of the molecular mechanisms of aziridinylquinone cytotoxicity and may be useful in the design of future bioreductive drugs.


Assuntos
Aziridinas/toxicidade , Benzoquinonas/toxicidade , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo , Animais , Antioxidantes/farmacologia , Aziridinas/química , Células Cultivadas , Desferroxamina/farmacologia , Dicumarol/farmacologia , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Peroxidação de Lipídeos/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/efeitos dos fármacos , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/efeitos dos fármacos , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Fenilenodiaminas/farmacologia , Relação Estrutura-Atividade , Testes de Toxicidade
11.
Arch Biochem Biophys ; 403(2): 249-58, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12139974

RESUMO

Enterobacter cloacae NAD(P)H:nitroreductase (NR; EC 1.6.99.7) catalyzes two-electron reduction of a series of quinoidal compounds according to a "ping-pong" scheme, with marked substrate inhibition by quinones. The steady-state catalytic constants (k(cat)) range from 0.1 to 1600s(-1), and bimolecular rate constants (k(cat)/K(m)) range from 10(3) to 10(8)M(-1)s(-1). Quinones, nitroaromatic compounds and competitive to NADH inhibitor dicumarol, quench the flavin mononucleotide (FMN) fluorescence of nitroreductase. The reactivity of NR with single-electron acceptors is consistent with an "outer-sphere" electron transfer model, taking into account high potential of FMN semiquinone/FMNH(-) couple and good solvent accessibility of FMN. However, the single-electron acceptor 1,1(')-dibenzyl-4,4(')-bipyridinium was far less reactive than quinones possessing similar single-electron reduction potentials (E(1)(7)). For all quinoidal compounds except 2-hydroxy-1,4-naphthoquinones, there existed parabolic correlations between the log of rate constants of quinone reduction and their E(1)(7) or hydride-transfer potential (E(7)(Q/QH(-))). Based on pH dependence of rate constants, a single-step hydride transfer seems to be a more feasible quinone reduction mechanism. The reactivities of 2-hydroxy-1,4-naphthoquinones were much higher than expected from their reduction potential. Most probably, their enhanced reactivity was determined by their binding at or close to the binding site of NADH and dicumarol, whereas other quinones used the alternative, currently unidentified binding site.


Assuntos
Enterobacter cloacae/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Elétrons , Concentração de Íons de Hidrogênio , NAD/metabolismo , Oxirredução , Quinonas/metabolismo , Relação Estrutura-Atividade
12.
J Biol Chem ; 279(4): 2583-92, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14604985

RESUMO

Mammalian thioredoxin reductases (TrxR) are important selenium-dependent antioxidant enzymes. Quinones, a wide group of natural substances, human drugs, and environmental pollutants may act either as TrxR substrates or inhibitors. Here we systematically analyzed the interactions of TrxR with different classes of quinone compounds. We found that TrxR catalyzed mixed single- and two-electron reduction of quinones, involving both the selenium-containing motif and a second redox center, presumably FAD. Compared with other related pyridine nucleotide-disulfide oxidoreductases such as glutathione reductase or trypanothione reductase, the k(ca)(t)/K(m) value for quinone reduction by TrxR was about 1 order of magnitude higher, and it was not directly related to the one-electron reduction potential of the quinones. A number of quinones were reduced about as efficiently as the natural substrate thioredoxin. We show that TrxR mainly cycles between the four-electron reduced (EH(4)) and two-electron reduced (EH(2)) states in quinone reduction. The redox potential of the EH(2)/EH(4) couple of TrxR calculated according to the Haldane relationship with NADPH/NADP(+) was -0.294 V at pH 7.0. Antitumor aziridinylbenzoquinones and daunorubicin were poor substrates and almost inactive as reversible TrxR inhibitors. However, phenanthrene quinone was a potent inhibitor (approximate K(i) = 6.3 +/- 1 microm). As with other flavoenzymes, quinones could confer superoxide-producing NADPH oxidase activity to mammalian TrxR. A unique feature of this enzyme was, however, the fact that upon selenocysteine-targeted covalent modification, which inactivates its normal activity, reduction of some quinones was not affected, whereas that of others was severely impaired. We conclude that interactions with TrxR may play a considerable role in the complex mechanisms underlying the diverse biological effects of quinones.


Assuntos
Quinonas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Animais , Cinética , NADP/metabolismo , Oxirredução , Quinonas/química , Ratos , Especificidade por Substrato , Tiorredoxina Dissulfeto Redutase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA