Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 56(4): 1756-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22252803

RESUMO

Subtilosin is a cyclical antimicrobial peptide produced by Bacillus amyloliquefaciens that has antimicrobial activity against the bacterial vaginosis-associated human pathogen Gardnerella vaginalis. The ability of subtilosin to inhibit G. vaginalis alone and in combination with the natural antimicrobial agents glycerol monolaurate (Lauricidin), lauric arginate, and ε-poly-L-lysine was tested using a checkerboard approach. Subtilosin was found to act synergistically with all of the chosen antimicrobials. These promising results indicate that lower concentrations of subtilosin in combination with other compounds could effectively be used to inhibit growth of the pathogen, thereby decreasing the risk of developed antimicrobial resistance. This is the first report on the effects of subtilosin combined with other natural antimicrobials against G. vaginalis.


Assuntos
Antibacterianos/farmacologia , Arginina/análogos & derivados , Bactérias/efeitos dos fármacos , Bacteriocinas/farmacologia , Lactobacillus/efeitos dos fármacos , Lauratos/farmacologia , Monoglicerídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Vaginose Bacteriana/microbiologia , Arginina/farmacologia , Sinergismo Farmacológico , Feminino , Gardnerella vaginalis/efeitos dos fármacos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Polilisina/farmacologia
2.
Probiotics Antimicrob Proteins ; 5(1): 26-35, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23637711

RESUMO

In the present study the antiviral properties of the bacteriocin subtilosin against Herpes simplex virus type 1 (HSV-1) and the safety and efficacy of a subtilosin-based nanofiber formulation were determined. High concentrations of subtilosin, the cyclical antimicrobial peptide produced by Bacillus amyloliquefaciens, were virucidal against HSV-1. Interestingly, at non-virucidal concentrations, subtilosin inhibited wild type HSV-1 and aciclovir-resistant mutants in a dose-dependent manner. Although the exact antiviral mechanism is not fully understood, time of addition experiments and western blot analysis suggest that subtilosin does not affect viral multiplication steps prior to protein synthesis. Poly(vinyl alcohol) (PVOH)-based subtilosin nanofibers with a width of 278 nm were produced by the electrospinning process. The retained antimicrobial activity of the subtilosin-based fibers was determined via an agar well diffusion assay. The loading capacity of the fibers was 2.4 mg subtilosin/g fiber, and loading efficiency was 31.6%. Furthermore, the nanofibers with and without incorporated subtilosin were shown to be nontoxic to human epidermal tissues using an in vitro human tissue model. Taking together these results subtilosin-based nanofibers should be further studied as a novel alternative method for treatment and/or control of HSV-1 infection.

3.
Probiotics Antimicrob Proteins ; 3(1): 41-47, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21949544

RESUMO

Subtilosin A is a 35-amino acid long cyclical peptide produced by Bacillus amyloliquefaciens that has potent antimicrobial activity against a variety of human pathogens, including the bacterial vaginosis-related Gardnerella vaginalis. The specific mode of action of subtilosin against G. vaginalis was elucidated by studying its effects on the proton motive force's (PMF) components: transmembrane electric potential (ΔΨ), transmembrane pH gradient (ΔpH), and intracellular ATP levels. The addition of subtilosin to G. vaginalis cells caused an immediate and total depletion of the ΔpH, but had no effect on the ΔΨ. Subtilosin also triggered an instant but partial efflux of intracellular ATP that was twofold higher than that of the positive control bacteriocin, nisin. Taken together, these data suggest that subtilosin inhibits G. vaginalis growth by creating transient pores in the cells' cytoplasmic membrane, leading to an efflux of intracellular ions and ATP and eventually cell death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA