Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Small ; 18(29): e2201106, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35695331

RESUMO

There is a growing need to control and tune nanoparticles (NPs) to increase their stability and effectiveness, especially for photo- and electrochemical energy conversion applications. Exsolved particles are well anchored and can be re-shaped without changing their initial location and structural arrangement. However, this usually involves lengthy treatments and use of toxic gases. Here, the galvanic replacement/deposition method is used, which is simpler, safer, and leads to a wealth of new hybrid nanostructures with a higher degree of tailorability. The produced NiAu bimetallic nanostructures supported on SrTiO3 display exceptional activity in plasmon-assisted photoelectrochemical (PEC) water oxidation reactions. In situ scanning transmission electron microscopy is used to visualize the structural evolution of the plasmonic bimetallic structures, while theoretical simulations provide mechanistic insight and correlate the surface plasmon resonance effects with structural features and enhanced PEC performance. The versatility of this concept in shifting catalytic modes to the hydrogen evolution reaction is demonstrated by preparing hybrid NiPt bimetallic NPs of low Pt loadings on highly reduced SrTiO3 supports. This powerful methodology enables the design of supported bimetallic nanomaterials with tunable morphology and catalytic functionalities through minimal engineering.

2.
Phys Chem Chem Phys ; 24(19): 11856-11871, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35510665

RESUMO

The surface protonic conductivity of porous monoclinic ZrO2 sintered at temperatures in the range 700-1100 °C yielding relative densities of around 60% and grain sizes of approximately 160 nm has been studied using impedance spectroscopy as a function of temperature well below the sintering temperature in wet atmospheres (pH2O = 0.03 bar). The sum of two high-frequency impedance responses is argued to represent surface conductance according to a new model of impedance over curved surfaces. A simple brick layer model is applied to compare the measured macroscopic conductivities with predicted surface conductances. The well-faceted samples sintered at the highest temperatures exhibited activation enthalpies up to 58 kJ mol-1 of surface protonic conduction in wet atmospheres at temperatures above 300 °C. We attribute this to the mobility of dissociated protons over surface oxide ions, and the high preexponential is in good agreement with a model comprising relatively strong dissociative chemisorption. With decreasing sintering temperature, the particles appear more rounded, with less developed facets, and we obtain activation enthalpies of surface protonic conduction in the chemisorbed layer down to around 30 kJ mol-1, with correspondingly smaller preexponentials and an observed dependency. Supported by the thermogravimetry of adsorption, we attribute this to weaker and more molecular chemisorption on the more randomly terminated less faceted surfaces, providing water layers with fewer dissociated charge carrying protons, but also smaller activation enthalpies of mobility. Below 200 °C, all samples exhibit a strongly inverse temperature dependency characteristic of conduction in the 1st physisorbed layer with increasing coverage. The preexponentials correspond well to the models of physisorption, with dissociation to and proton migration between physisorbed water molecules. The enthalpies fit well to physisorption and with enthalpies of dissociation and proton mobility close to those of liquid water. We have by this introduced models for proton conduction in chemisorbed and physisorbed water on ZrO2, applicable to other oxides as well, and shown that preexponentials are quantitatively assessable in the order-of-magnitude level to discriminate models via a simple brick layer model based topographical analysis of the ceramic microstructure.

3.
Phys Chem Chem Phys ; 24(25): 15357-15364, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35703372

RESUMO

N2O, and mixtures of N2 and O2, dissolved in water-both in the presence and absence of added noble gases-have been subjected to ultrasonication with quantification of nitrite and nitrate products. Significant increase in product formation upon adding noble gas for both reactant systems is observed, with the reactivity order Ne < Ar < Kr < Xe. These observations lend support to the idea that extraordinarily high electronic and vibrational temperatures arise under these conditions. This is based on recent observations of sonoluminescence in the presence of noble gases and is inconsistent with the classical picture of adiabatic bubble collapse upon acoustic cavitation. The reaction mechanisms of the first few reaction steps necessary for the critical formation of NO are discussed, illustrated by quantum chemical calculations. The role of intermediate N2O in this series of elementary steps is also discussed to better understand the difference between the two reactant sources (N2O and 2 : 1 N2 : O2; same stoichiometry).

4.
Nat Mater ; 18(7): 752-759, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31160804

RESUMO

Hydrogen production from water electrolysis is a key enabling energy storage technology for the large-scale deployment of intermittent renewable energy sources. Proton ceramic electrolysers (PCEs) can produce dry pressurized hydrogen directly from steam, avoiding major parts of cost-driving downstream separation and compression. However, the development of PCEs has suffered from limited electrical efficiency due to electronic leakage and poor electrode kinetics. Here, we present the first fully operational BaZrO3-based tubular PCE, with 10 cm2 active area and a hydrogen production rate above 15 Nml min-1. The novel steam anode Ba1-xGd0.8La0.2+xCo2O6-δ exhibits mixed p-type electronic and protonic conduction and low activation energy for water splitting, enabling total polarization resistances below 1 Ω cm2 at 600 °C and Faradaic efficiencies close to 100% at high steam pressures. These tubular PCEs are mechanically robust, tolerate high pressures, allow improved process integration and offer scale-up modularity.

5.
Phys Chem Chem Phys ; 22(21): 11891-11902, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32436929

RESUMO

We apply density functional theory to estimate the energetics and charge carrier concentrations and, in turn, the resistance across the (210)[001] and (111)[11[combining macron]0] grain boundaries (GBs) in proton conducting Y-doped BaZrO3, assessing four commonly used approximations in space charge modelling. The abrupt core approximation, which models the GB core as a single atomic plane rather than a set of multiple atomic planes, gives an underestimation of the GB resistance with around one order of magnitude for both GBs. The full depletion approximation, which assumes full depletion of effectively positive charge carriers in the space charge layers, has negligible effect on the GB resistance compared to a more accurate model with decaying depletion. Letting protons redistribute in the continuity between atomic planes gives a GB resistance up to 5 times higher than the case where protons are restricted to be located at atomic planes. Finally, neglecting trapping effects between the acceptor doping and the defect charge carriers gives a higher GB resistance with a factor of roughly 2.

6.
Phys Chem Chem Phys ; 22(27): 15541-15548, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32608412

RESUMO

We report the synthesis of phase pure Fe2WO6 and its structural characterization by high quality synchrotron X-ray powder diffraction, followed by studies of electric and thermoelectric properties as a function of temperature (200-950 °C) and pO2 (1-10-3 bar). The results are shown to be in accordance with a defect chemical model comprising formation of oxygen vacancies and charge compensating electrons at high temperatures. The standard enthalpy and entropy of formation of an oxygen vacancy and two electrons in Fe2WO6 are found to be 113(5) kJ mol-1 and 41(5) J mol-1 K-1, respectively. Electrons residing as Fe2+ in the Fe3+ host structure act as charge carriers in a small polaron conducting manner. A freezing-in of oxygen vacancies below approximately 650 °C results in a region of constant charge carrier concentration, corresponding to an iron site fraction of XFe2+≅ 0.03. By decoupling of mobility from conductivity, we find a polaron hopping activation energy of 0.34(1) eV and a charge mobility pre-exponential u0 = 400(50) cm2 kV-1 s-1. We report thermal conductivity for the first time for Fe2WO6. The relatively high conductivity, large negative Seebeck coefficient and low thermal conductivity make Fe2WO6 an interesting candidate as an n-type thermoelectric in air, for which we report a maximum zT of 0.027 at 900 °C.

7.
J Am Chem Soc ; 141(11): 4653-4659, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30802045

RESUMO

Mixed oxide hydride anion systems constitute a novel class of materials exhibiting intriguing properties such as solid-state hydride ion conduction and fast anion exchange. In this contribution we derive the kinetics of hydride ion transport in a mixed oxide-hydride system, SrTiO3- xH x, through isotope exchange and depth profiling. Density functional theory (DFT) calculations indicate that migration of H- to neighboring vacant oxygen lattice sites is fast, but that long-range transport is impeded by slow reorganization of the oxygen sublattice. From measured hydride tracer-diffusion coefficients and the correlation factors derived from DFT, we are able to derive the hydrogen self-diffusion coefficients in SrTiO3- xH x. More generally, the explicit description of hydride ion transport in SrTiO3- xH x through combination of experimental and computational methods reported in this work can be applied to explore anion diffusion in other mixed anion systems.

8.
Photochem Photobiol Sci ; 18(4): 837-844, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30411099

RESUMO

Ta3N5 nanotubes (NTs) were obtained from nitridation of Ta2O5 NTs, which were grown directly on Ta foil through a 2-step anodization procedure. With Co(OH)x decoration, a photocurrent density as high as 2.3 mA cm-2 (1.23 V vs. NHE) was reached under AM1.5G simulated solar light; however, the electrode suffered from photocorrosion. More stable photoelectrochemical (PEC) performance was achieved by first loading Co(OH)x, followed by loading cobalt phosphate (Co-Pi) as double co-catalysts. The Co(OH)x/Co-Pi double co-catalysts may act as a hole storage layer that slows down the photocorrosion caused by the accumulated holes on the surface of the electrode. A "waggling" appearance close to the "mouth" of Ta2O5 NTs was observed, and may indicate structural instability of the "mouth" region, which breaks into segments after nitridation and forms a top layer of broken Ta3N5 NTs. A unique mesoporous structure of the walls of the Ta3N5 NTs, which is reported here the first time, is also a result of the nitridation process. We believe that the mesoporous structure makes it difficult for the nanotubes to be fully covered by the co-catalyst layer, hence rationalizing the remaining degradation by photocorrosion.

9.
Phys Chem Chem Phys ; 21(32): 17662-17672, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31364626

RESUMO

We apply inline electron holography to investigate the electrostatic potential across an individual BaZr0.9Y0.1O3 grain boundary. With holography, we measure a grain boundary potential of -1.3 V. Electron energy loss spectroscopy analyses indicate that barium vacancies at the grain boundary are the main contributors to the potential well in this sample. Furthermore, geometric phase analysis and density functional theory calculations suggest that reduced atomic density at the grain boundary also contributes to the experimentally measured potential well.

10.
Phys Chem Chem Phys ; 20(23): 15653-15660, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29845151

RESUMO

The transport of protonic charge carriers along and within the pore surfaces of porous oxide matrices is of significant importance for many catalytic and electrochemical applications, with porous TiO2 being a candidate material both for photocatalytic applications and as an electronically conducting support for polymer-based electrochemical cells. This work investigates the effect of acceptor (Cr and Fe) and donor (Nb) doping on protonic surface conduction in porous TiO2 over a wide range of relative humidity, temperature and oxygen activity. Generally, we find that acceptor dopants on the surface counteract dissociation and reduce the mobility of protons, while donor dopants give rise to enhanced dissociation making protonic surface conduction the highest for donor-doped samples, contrary to conventional bulk proton conductors. Moreover, protonic surface conduction in Cr-doped TiO2 is significantly higher under oxidising conditions compared to reducing conditions, which we relate to the presence of a higher valent species such as Cr6+ on the surface under oxidising conditions, again emphasising that protonic surface conduction increases with higher-valent (donor) and more acidic cations present on the surface.

11.
Phys Chem Chem Phys ; 20(4): 2754-2760, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29322127

RESUMO

Diffusivity on the A- and B-site of polycrystalline perovskite CaMnO3-δ with Ca deficiency and spinel CaMn2O4 (marokite) as a secondary phase was studied using chemical tracers and secondary ion mass spectrometry (SIMS) complemented by electron probe microanalysis (EPMA). Thin films containing Sr and Co chemical tracers were deposited on the polished surface of the polycrystalline composite sample followed by annealing at 800-1200 °C for 96 h. Diffusion profiles for each tracer were determined with SIMS, followed by calculation of diffusion coefficients by fitting to appropriate models. The Sr tracer showed mainly lattice diffusion, with an activation energy of 210 ± 30 kJ mol-1, whereas the Co tracer showed a combination of lattice and enhanced grain-boundary diffusion, with activation energies of 270 ± 30 kJ mol-1 and 380 ± 40 kJ mol-1, respectively. The diffusivities may be used to predict interdiffusion and lifetime of junctions between n-type CaMnO3-δ or CaMnO3-δ/CaMn2O4 composites and metallization interlayers or p-type leg materials in oxide thermoelectrics. In particular, the relatively high effective diffusivity of Co in polycrystalline CaMnO3-δ may play a role in the reported fast formation of the secondary phase (Ca3Co2-yMnyO6) between p-type Ca3Co3.92O9+δ and n-type CaMnO3-δ in a direct p-n thermoelectric junction.

12.
Photochem Photobiol Sci ; 16(1): 10-16, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27602784

RESUMO

We have fabricated and tested a photoelectrochemical (PEC) cell where the aqueous electrolyte has been replaced by a proton conducting hydrated Nafion® polymer membrane. The membrane was sandwiched between a TiO2-based photoanode and a Pt/C-based cathode. The performance was tested with two types of photoanode electrodes, a thermally prepared TiO2 film on Ti foil (T-TiO2) and a nanostructured TiO2 films in the form of highly ordered nanotubes (TNT) of different lengths. Firstly, photovoltammetry experiments were conducted under asymmetric conditions, where the anode was immersed in deionized water, while the cathode was kept in ambient air. The results showed a high incident photon-to-current efficiency (IPCE) of 19% under unassisted conditions (short-circuit, 0 V vs. cathode) with short TNT (ca. 1 µm) under 4 mW cm-2 illumination with UV-A rich light. Secondly, the deionized water was replaced by 0.5 M Na2SO4 and now the performance was higher with longer nanotubes, assigned to increased ionic conductivity inside the tubes. An unassisted (0 V) IPCE of 33% was achieved with nanotubes of ca. 8 µm. The presented solid-state PEC cell minimizes the electrode distance and volume of the device, and provides a way towards compact practical applications in solar water splitting.


Assuntos
Nanotubos/química , Titânio/química , Água/química , Técnicas Eletroquímicas , Eletrodos , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Raios Ultravioleta , Difração de Raios X
13.
Phys Chem Chem Phys ; 18(34): 24070-80, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27526388

RESUMO

This work presents a structural investigation of La2-xNdxCe2O7 (x = 0.0, 0.5, 1.0, 1.5, 2.0) using X-ray powder diffraction and total scattering neutron powder diffraction, analysed using Rietveld and the reverse Monte Carlo method (RMC). Ab initio molecular dynamics (MD) modelling is also performed for further investigations of the local order. The main intensities in the neutron diffraction data for the La2-xNdxCe2O7 series correspond to the fluorite structure. However, additional C-type superlattice peaks are visible for x > 0 and increase in intensity with increasing x. The Nd-containing compositions (x > 0) are best fitted with Rietveld analysis by using a combination of oxygen deficient fluorite and oxygen excess C-type structures. No indications of cation order are found in the RMC or Rietveld analysis, and the absence of cation order is supported by the MD modelling. We argue that the superlattice peaks originate from oxygen vacancy ordering and associated shift in the cation position away from the ideal fluorite site similar to that in the C-type structure, which is seen from the Rietveld refinements and the observed ordering in the MD modelling. The vacancies favour alignments in the 〈110〉, 〈111〉 and especially the 〈210〉 direction. Moreover, we find that such ordering might also be found to a small extent in La2Ce2O7, explaining the discernible modulated background between the fluorite peaks. The observed overlap of the main Bragg peaks between the fluorite and C-type phase supports the co-existence of vacancy ordered and more disordered domains. This is further supported by the observed similarity of the radial distribution functions as modelled with MD. The increase in long range oxygen vacancy order with increasing Nd-content in La2-xNdxCe2O7 corresponds well with the lower oxide ion conductivity in Nd2Ce2O7 compared to La2Ce2O7 reported earlier.

14.
ChemSusChem ; 16(14): e202300661, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37254952

RESUMO

Proton conducting acceptor-doped SrZrO3 has a history as long as that of BaZrO3 , but has attracted less interest. Inspired by its higher transport number of ionic conduction in wet oxygen revealed by our recent work, we here explore further aspects of doped SrZrO3 as electrolyte in proton ceramic electrochemical cells. In-situ high temperature XRD (HT-XRD) analysis of SrZr0.9 Y0.1 O3-δ (SZY10) indicated an anisotropic chemical expansion of hydration, stronger along the b than the a direction, and negative in the c direction. A systematic electromotive force (EMF) and impedance spectroscopy study as a function of p O 2 ${p_{{\rm{O}}_{\rm{2}} } }$ and p H 2 O ${p_{{\rm{H}}_{\rm{2}} {\rm{O}}} }$ allowed determination of partial conductivities of electron holes and ions (mainly protons) in bulk (grain interior) and grain boundaries. Enthalpies and preexponentials were determined and interpreted for bulk and grain boundary partial conductivities based on defect chemistry and a brick layer model. The hole conductivity in bulk is modest and ensures high ionic transport numbers in oxidizing atmospheres, while grain boundaries exhibit lower ionic transport numbers from a relatively higher hole conductivity attributed primarily to tunnelling past the deepest part of the space charge region. Y-doped SrZrO3 (SZY) materials exhibit lower proton conductivities but excel over Y-doped BaZrO3 (BZY) in terms of thermal expansion compatibility with electrode materials and higher ionic transport numbers in oxidizing atmospheres and may hence be candidates for functional layers between BZY-based electrolytes and positrodes in proton ceramic electrochemical cells.

15.
Phys Chem Chem Phys ; 14(33): 11808-15, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22828729

RESUMO

The nitrogen related defect chemistry and electronic structure of wide band gap oxides are investigated by density functional theory defect calculations of N(O)(q), NH(O)(×), and (NH2)(O)(·) as well as V(O)(··) and OH(O)(·) in MgO, CaO, SrO, Al(2)O(3), In(2)O(3), Sc(2)O(3), Y(2)O(3), La(2)O(3), TiO(2), SnO(2), ZrO(2), BaZrO(3), and SrZrO(3). The N(O)(q) acceptor level is found to be deep and the binding energy of NH(O)(×) with respect to N(O)' and (OH(O)(·) is found to be significantly negative, i.e. binding, in all of the investigated oxides. The defect structure of the oxides was found to be remarkably similar under reducing and nitriding conditions (1 bar N(2), 1 bar H(2) and 1 × 10(-7) bar H(2)O): NH(O)(×) predominates at low temperatures and [N(O)'] = 2[V(O)(··) predominates at higher temperatures (>900 K for most of the oxides). Furthermore, we evaluate how the defect structure is affected by non-equilibrium conditions such as doping and quenching. In terms of electronic structure, N(O)' is found to introduce isolated N-2p states within the band gap, while the N-2p states of NH(O)(×) are shifted towards, or overlap with the VBM. Finally, we assess the effect of nitrogen incorporation on the proton conducting properties of oxides and comment on their corrosion resistance in nitriding atmospheres in light of the calculated defect structures.

16.
Dalton Trans ; 51(48): 18667-18677, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36448547

RESUMO

Ba1-xGd1-yLax+yCo2O6-δ (BGLC) compositions with large compositional ranges of Ba, Gd, and La have been characterised with respect to phase compositions, structure, and thermal and chemical expansion. The results show a system with large compositional flexibility, enabling tuning of functional properties and thermal and chemical expansion. We show anisotropic chemical expansion and detailed refinements of emerging phases as La is substituted for Ba and Gd. The dominating phase is the double perovskite structure Pmmm, which is A-site ordered along the c-axes and with O vacancy ordering along the b-axis in the Ln-layer. Phases emerging when substituting La for Ba are orthorhombic Ba-deficient Pbnm and cubic LaCoO3-based R3̄c. When La is almost completely substituted for Gd, the material can be stabilised in Pmmm, or cubic Pm3̄m, depending on thermal and atmospheric history. We list thermal expansion coefficients for x = 0-0.3, y = 0.2.

17.
Science ; 376(6591): 390-393, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35446633

RESUMO

Proton ceramic reactors offer efficient extraction of hydrogen from ammonia, methane, and biogas by coupling endothermic reforming reactions with heat from electrochemical gas separation and compression. Preserving this efficiency in scale-up from cell to stack level poses challenges to the distribution of heat and gas flows and electric current throughout a robust functional design. Here, we demonstrate a 36-cell well-balanced reactor stack enabled by a new interconnect that achieves complete conversion of methane with more than 99% recovery to pressurized hydrogen, leaving a concentrated stream of carbon dioxide. Comparable cell performance was also achieved with ammonia, and the operation was confirmed at pressures exceeding 140 bars. The stacking of proton ceramic reactors into practical thermo-electrochemical devices demonstrates their potential in efficient hydrogen production.

18.
ACS Appl Mater Interfaces ; 13(6): 7416-7422, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33544584

RESUMO

We report a near-broken-gap alignment between p-type FeWO4 and n-type Fe2WO6, a model pair for the realization of Ohmic direct junction thermoelectrics. Both undoped materials have a large Seebeck coefficient and high electrical conductivity at elevated temperatures, due to inherent electronic defects. A band-alignment diagram is proposed based on X-ray photoelectron and ultraviolet-visible light reflectance spectroscopy. Experimentally acquired nonrectifying I-V characteristics and the constructed band-alignment diagram support the proposed formation of a near-broken-gap junction. We have additionally performed computational modeling based on density functional theory (DFT) on bulk models of the individual compounds to rationalize the experimental band-alignment diagram and to provide deeper insight into the relevant band characteristics. The DFT calculations confirm an Fe-3d character of the involved band edges, which we suggest is a decisive feature for the unusual band overlap.

19.
Rev Sci Instrum ; 92(4): 043902, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243368

RESUMO

A high temperature thermoelectric test setup for the NORECS ProboStat™ sample holder cell has been designed, constructed, and tested. It holds four thermoelectric legs of up to 5 × 5 mm2 area each and flexible height, allows various interconnects to be tested, and utilizes the spring-load system of the ProboStat for fixation and contact. A custom stainless steel support tube flushed with water provides the cold sink, enabling large temperature gradients. Thermocouples and electrodes as well as the gas supply and outer tube use standard ProboStat base unit feedthroughs and dimensions. The setup allows for testing in controlled atmospheres with the hot side temperature of up to around 1000 °C and a temperature gradient of up to 600 °C. We demonstrate the test setup on a four-leg Li-NiO/Al-ZnO module with gold interconnects. The comparison between the predicted performance based on individual material parameters and the experimentally obtained module performance underlines the necessity for testing materials in combination, including interconnects. The four-leg setup allows versatile match-screening, performance evaluation, and long-term stability studies of thermoelectric materials in combination with hot and cold side interconnects under realistic operational conditions.

20.
ACS Appl Mater Interfaces ; 13(39): 46875-46885, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34570462

RESUMO

In this study, polyol-made CdS and CdSe crystalline nanoparticles (NPs) are loaded by impregnation on TiO2 nanotube arrays (TNTAs) for solar-simulated light-driven photoelectrochemical (PEC) water vapor splitting. For the first time, we introduce a safe way to utilize toxic, yet efficient photocatalysts by integration in solid-state PEC (SSPEC) cells. The enabling features of SSPEC cells are the surface protonic conduction mechanism on TiO2 and the use of polymeric electrolytes, such as Nafion instead of liquid ones, for operation with gaseous reactants, like water vapor from ambient humidity. Herein, we studied the effects of both the operating conditions in gaseous ambient atmospheres and the surface modifications of TNTAs-based photoanodes with well-crystallized CdS and CdSe NPs. We showed 3.6 and 2.5 times increase in the photocurrent density of defective TNTAs modified with CdS and CdSe, respectively, compared to the pristine TNTAs. Electrochemical impedance spectroscopy and structural characterizations attributed the improved performance to the higher conductivity induced by intrinsic defects as well as to the enhanced electron/hole separation at the TiO2/CdS heterojunction under gaseous operating conditions. The SSPEC cells were evaluated by cycling between high relative humidity (RH) (80%) and low RH levels (40%), providing direct evidence of the effect of RH and, in turn, adsorbed water, on the cell performance. Online mass spectrometry indicated the corresponding difference in the H2 production rate. In addition, a complete restoration of the SSPEC cell performance from low to high RH levels was also achieved. The presented system can be employed in off-grid, water depleted, and air-polluted areas for the production of hydrogen from renewable energy and provides a solution for the safe use of toxic, yet efficient photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA