Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hand Surg Am ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37191606

RESUMO

PURPOSE: The purpose of this study was to assess the functional and patient-reported outcomes after the use of the internal joint stabilizer (IJS) for unstable terrible triad injuries. Specifically, we sought to determine our complication rate and the impact of complications on patient outcomes. METHODS: We identified all patients who had an IJS placed as a supplemental fixation for a terrible triad injury at two urban, level 1 academic medical centers. We reviewed these patients' charts for demographic information, complication profiles, postoperative range of motion (ROM), and pain-level data. We also collected the QuickDASH and Patient-Rated Elbow Evaluation (PREE) scores. Descriptive statistics were reported. Final visit data were compared between patients who returned to the OR for a complication and those who did not. RESULTS: From 2018 to 2020, 29 patients had an IJS placed for a terrible triad injury. The median final follow-up was 6.3 months after surgery (IQR: 6.2 months). There were 38 complications in 19 patients (65.5%) that required 12 patients to return to the OR (41.3%) for procedures beyond simple IJS removal. There were no significant differences in the ROM between patients who returned to the OR for a complication and those who did not. QuickDASH and PREE scores were greater (indicating more disability) in patients who had a complication that required a secondary surgical procedure. CONCLUSIONS: Patients who receive an IJS incur a high rate of complications. When patients sustain complications that require secondary surgeries, their ultimate functional outcome scores worsen. TYPE OF STUDY/LEVEL OF EVIDENCE: Therapeutic IV.

2.
Int Wound J ; 19(3): 633-642, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34235863

RESUMO

Negative pressure wound therapy (NPWT) has become the prevailing standard of care for treating complex soft tissue wounds and is now being considered for use in alternative applications including improving skin graft take. While it is generally agreed that negative pressure leads to improved wound healing, universal consensus on its optimal application is not supported in the literature. We describe the design and validation of a bioreactor to determine the prospective benefits of NPWT on skin grafts and engineered skin substitutes (ESS). Clinically relevant pressures were applied, and the native human skin was able to withstand greater negative pressures than the engineered substitutes. Both skin types were cultured under static, flow-only, and -75 mm Hg conditions for 3 days. While it remained intact, there was damage to the epidermal-dermal junction in the ESS after application of negative pressure. The normal skin remained viable under all culture conditions. The engineered skin underwent apoptosis in the flow-only group; however, the application of negative pressure reduced apoptosis. Vascular endothelial growth factor levels were significantly higher in the normal flow-only group, 152.0 ± 75.1 pg/mg protein, than the other culture conditions, 81.6 ± 35.5 pg/mg for the static and 103.6 ± pg/mg for the negative pressure conditions. The engineered skin had a similar trend but the differences were not significant. This bioreactor design can be used to evaluate the impacts of NPWT on the anatomy and physiology of skin to improve outcomes in wounds after grafting with normal or engineered skin.


Assuntos
Tratamento de Ferimentos com Pressão Negativa , Reatores Biológicos , Humanos , Estudos Prospectivos , Transplante de Pele , Fator A de Crescimento do Endotélio Vascular
3.
Exp Neurol ; 374: 114695, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246304

RESUMO

Mild traumatic brain injury (mTBI) is a leading cause of disability in the United States, with neuropsychiatric disturbances such as depression, anxiety, PTSD, and social disturbances being common comorbidities following injury. The molecular mechanisms driving neuropsychiatric complications following neurotrauma are not well understood and current FDA-approved pharmacotherapies employed to ameliorate these comorbidities lack desired efficacy. Concerted efforts to understand the molecular mechanisms of and identify novel drug candidates for treating neurotrauma-elicited neuropsychiatric sequelae are clearly needed. Serotonin (5-HT) is linked to the etiology of neuropsychiatric disorders, however our understanding of how various forms of TBI directly affect 5-HT neurotransmission is limited. 5-HT neurons originate in the raphe nucleus (RN) of the midbrain and project throughout the brain to regulate diverse behavioral phenotypes. We hypothesize that the characterization of the dynamics governing 5-HT neurotransmission after injury will drive the discovery of novel drug targets and lead to a greater understanding of the mechanisms associated with neuropsychiatric disturbances following mild TBI (mTBI). Herein, we provide evidence that closed-head mTBI alters total DRN 5-HT levels, with RNA sequencing of the DRN revealing injury-derived alterations in transcripts required for the development, identity, and functional stability of 5-HT neurons. Further, using gene ontology analyses combined with immunohistological analyses, we have identified a novel mechanism of transcriptomic control within 5-HT neurons that may directly influence 5-HT neuron identity/function post-injury. These studies provide molecular evidence of injury-elicited 5-HT neuron dysregulation, data which may expedite the identification of novel therapeutic targets to attenuate TBI-elicited neuropsychiatric sequelae.


Assuntos
Concussão Encefálica , Núcleo Dorsal da Rafe , Humanos , Serotonina , Concussão Encefálica/complicações , Neurônios , Perfilação da Expressão Gênica , Neurônios Serotoninérgicos
4.
Brain Sci ; 14(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38248266

RESUMO

Traumatic brain injury (TBI) is a pervasive public health crisis that severely impacts the quality of life of affected individuals. Like peripheral forms of trauma, TBI results from extraordinarily heterogeneous environmental forces being imparted on the cranial space, resulting in heterogeneous disease pathologies. This has made therapies for TBI notoriously difficult to develop, and currently, there are no FDA-approved pharmacotherapies specifically for the acute or chronic treatment of TBI. TBI is associated with changes in cognition and can precipitate the onset of debilitating psychiatric disorders like major depressive disorder (MDD), generalized anxiety disorder (GAD), and post-traumatic stress disorder (PTSD). Complicating these effects of TBI, FDA-approved pharmacotherapies utilized to treat these disorders often fail to reach the desired level of efficacy in the context of neurotrauma. Although a complicated association, decades of work have linked central serotonin (5-HT) neurotransmission as being involved in the etiology of a myriad of neuropsychiatric disorders, including MDD and GAD. 5-HT is a biogenic monoamine neurotransmitter that is highly conserved across scales of biology. Though the majority of 5-HT is isolated to peripheral sites such as the gastrointestinal (GI) tract, 5-HT neurotransmission within the CNS exerts exquisite control over diverse biological functions, including sleep, appetite and respiration, while simultaneously establishing normal mood, perception, and attention. Although several key studies have begun to elucidate how various forms of neurotrauma impact central 5-HT neurotransmission, a full determination of precisely how TBI disrupts the highly regulated dynamics of 5-HT neuron function and/or 5-HT neurotransmission has yet to be conceptually or experimentally resolved. The purpose of the current review is, therefore, to integrate the disparate bodies of 5-HT and TBI research and synthesize insight into how new combinatorial research regarding 5-HT neurotransmission and TBI may offer an informed perspective into the nature of TBI-induced neuropsychiatric complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA