Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Rep ; 39(10): 1331-1343, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32661816

RESUMO

KEY MESSAGE: Brachypodium distachyon is a good model for studying chloropla st movements in the crop plants, wheat, rye and barley. The movements are activated only by blue light, similar to Arabidopsis. Chloroplast translocations are ubiquitous in photosynthetic organisms. On the one hand, they serve to optimize energy capture under limiting light, on the other hand, they minimize potential photodamage to the photosynthetic apparatus in excess light. In higher plants chloroplast movements are mediated by phototropins (phots), blue light receptors that also control other light acclimation responses. So far, Arabidopsis thaliana has been the main model for studying the mechanism of blue light signaling to chloroplast translocations in terrestrial plants. Here, we propose Brachypodium distachyon as a model in research into chloroplast movements in C3 cereals. Brachypodium chloroplasts respond to light in a similar way to those in Arabidopsis. The amino acid sequence of Brachypodium PHOT1 is 79.3% identical, and that of PHOT2 is 73.6% identical to the sequence of the corresponding phototropin in Arabidopsis. Both phototropin1 and 2 are expressed in Brachypodium, as shown using quantitative real-time PCR. Intriguingly, the light-expression pattern of BradiPHOT1 and BradiPHOT2 is the opposite of that for Arabidopsis phototropins, suggesting potential unique light signaling in C3 grasses. To investigate if Brachypodium is a good model for studying grass chloroplast movements we analyzed these movements in the leaves of three C3 crop grasses, namely wheat, rye and barley. Similarly to Brachypodium, chloroplasts only respond to blue light in all these species.


Assuntos
Brachypodium/metabolismo , Brachypodium/efeitos da radiação , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Luz , Arabidopsis/metabolismo , Brachypodium/genética , Regulação da Expressão Gênica de Plantas , Movimento , Fototropinas/genética , Fototropinas/metabolismo , Filogenia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
2.
Plant Sci ; 229: 10-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25443829

RESUMO

The ability to tolerate environmental stresses is crucial for all living organisms, and gene duplication is one of the sources for evolutionary novelties. Arabidopsis thaliana INDUCER OF CBF EXPRESSION1 and 2 (ICE1 and ICE2) encode MYC-type bHLH (basic helix-loop-helix) transcription factors. They confer cold stress tolerance by induction of the CBF/DREB1 regulon and regulate stomata formation. Although ICE2 is closely related to ICE1, its origin and role in cold response remains uncertain. Here, we used a bioinformatics/phylogenetic approach to uncover the ICE2 evolutionary history, structural evolution and functional divergence from the putative ancestral gene. Sequence diversification from ICE1 included the gain of cis-acting elements in ICE2 promoter sequence that may provide meristem-specific and defense-related gene expression. By analyzing transgenic Arabidopsis lines with ICE2 over-expression we showed that it contributes to stomata formation, flowering time regulation and cold response. Constitutive ICE2 expression led to induced meristem freezing tolerance, resulting from activation of CBF1 and CBF3 genes and ABA biosynthesis by NCED3 induction. We presume that ICE2 gene has originated from a duplication event about 17.9MYA followed by sub- and neofunctionalization of the ancestral ICE1 gene. Moreover, we predict its role in pathogen resistance and flowering time regulation.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Evolução Molecular , Genes de Plantas , Filogenia , Fatores de Transcrição/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Sequência de Bases , Biologia Computacional , Congelamento , Regulação da Expressão Gênica de Plantas , Meristema/genética , Dados de Sequência Molecular , Fenótipo , Folhas de Planta/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sintenia/genética , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA