Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(26): 7948-7952, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912704

RESUMO

We demonstrate experimentally nonequilibrium transport in unipolar quasi-1D hot electron devices reaching the ballistic limit at room temperature. The devices are realized with heterostructure engineering in nanowires to obtain dopant- and dislocation-free 1D-epitaxy and flexible bandgap engineering. We show experimentally the control of hot electron injection with a graded conduction band profile and the subsequent filtering of hot and relaxed electrons with rectangular energy barriers. The number of electrons passing the barrier depends exponentially on the transport length with a mean-free path of 200-260 nm, and the electrons reach the ballistic transport regime for the shortest devices with 70% of the electrons flying freely through the base electrode and the barrier reflections limiting the transport to the collector.

2.
Nano Lett ; 19(5): 2832-2839, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30938533

RESUMO

In this work, we present a method to synthesize arrays of hexagonal InGaN submicrometer platelets with a top c-plane area having an extension of a few hundred nanometers by selective area metal-organic vapor-phase epitaxy. The InGaN platelets were made by in situ annealing of InGaN pyramids, whereby InGaN from the pyramid apex was thermally etched away, leaving a c-plane surface, while the inclined {101̅1} planes of the pyramids were intact. The as-formed c-planes, which are rough with islands of a few tens of nanometers, can be flattened with InGaN regrowth, showing single bilayer steps and high-quality optical properties (full width at half-maximum of photoluminescence at room temperature: 107 meV for In0.09Ga0.91N and 151 meV for In0.18Ga0.82N). Such platelets offer surfaces having relaxed lattice constants, thus enabling shifting the quantum well emission from blue (as when grown on GaN) to green and red. For single InGaN quantum wells grown on the c-plane of such InGaN platelets, a sharp interface between the quantum well and the barriers was observed. The emission energy from the quantum well, grown under the same conditions, was shifted from 2.17 eV on In0.09Ga0.91N platelets to 1.95 eV on In0.18Ga0.82N platelets as a result of a thicker quantum well and a reduced indium pulling effect on In0.18Ga0.82N platelets. On the basis of this method, prototype light-emitting diodes were demonstrated with green emission on In0.09Ga0.91N platelets and red emission on In0.18Ga0.82N platelets.

3.
Nano Lett ; 18(1): 365-372, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29256612

RESUMO

Semiconductor nanowires have great potential for realizing broadband photodetectors monolithically integrated with silicon. However, the spectral range of such detectors has so far been limited to selected regions in the ultraviolet, visible, and near-infrared regions. Here, we report on the first intersubband nanowire heterostructure array photodetectors exhibiting a spectrally resolved photoresponse from the visible to long-wavelength infrared. In particular, the infrared response from 3 to 20 µm is enabled by intersubband transitions in low-bandgap InAsP quantum discs synthesized axially within InP nanowires. The intriguing optical characteristics, including unexpected sensitivity to normal incident radiation, are explained by excitation of the longitudinal component of optical modes in the photonic crystal formed by the nanostructured portion of the detectors. Our results provide a generalizable insight into how broadband nanowire photodetectors may be designed and how engineered nanowire heterostructures open up new, fascinating opportunities for optoelectronics.

4.
Nano Lett ; 18(9): 5446-5452, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30033733

RESUMO

GaN nanowires (NWs) are promising building blocks for future optoelectronic devices and nanoelectronics. They exhibit stronger piezoelectric properties than bulk GaN. This phenomena may be crucial for applications of NWs and makes their study highly important. We report on an investigation of the structure evolution of a single GaN NW under an applied voltage bias along polar [0001] crystallographic direction until its mechanical break. The structural changes were investigated using coherent X-ray Bragg diffraction. The three-dimensional (3D) intensity distributions of the NWs without metal contacts, with contacts, and under applied voltage bias in opposite polar directions were analyzed. Coherent X-ray Bragg diffraction revealed the presence of significant bending of the NWs already after metal contacts deposition, which was increased at applied voltage bias. Employing analytical simulations based on elasticity theory and a finite element method (FEM) approach, we developed a 3D model of the NW bending under applied voltage. From this model and our experimental data, we determined the piezoelectric constant of the GaN NW to be about 7.7 pm/V in [0001] crystallographic direction. The ultimate tensile strength of the GaN NW was obtained to be about 1.22 GPa. Our work demonstrates the power of in operando X-ray structural studies of single NWs for their effective design and implementation with desired functional properties.

5.
Nano Lett ; 17(6): 3356-3362, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28535059

RESUMO

The possibility to engineer nanowire heterostructures with large bandgap variations is particularly interesting for technologically important broadband photodetector applications. Here we report on a combined study of design, fabrication, and optoelectronic properties of infrared photodetectors comprising four million n+-i-n+ InP nanowires periodically ordered in arrays. The nanowires were grown by metal-organic vapor phase epitaxy on InP substrates, with either a single or 20 InAsP quantum discs embedded in the i-segment. By Zn compensation of the residual n-dopants in the i-segment, the room-temperature dark current is strongly suppressed to a level of pA/NW at 1 V bias. The low dark current is manifested in the spectrally resolved photocurrent measurements, which reveal strong photocurrent contributions from the InAsP quantum discs at room temperature with a threshold wavelength of about 2.0 µm and a bias-tunable responsivity reaching 7 A/W@1.38 µm at 2 V bias. Two different processing schemes were implemented to study the effects of radial self-gating in the nanowires induced by the nanowire/SiOx/ITO wrap-gate geometry. Summarized, our results show that properly designed axial InP/InAsP nanowire heterostructures are promising candidates for broadband photodetectors.

6.
Nanotechnology ; 28(11): 114006, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211361

RESUMO

Nanowire array ensembles contacted in a vertical geometry are extensively studied and considered strong candidates for next generations of industrial scale optoelectronics. Key challenges in this development deal with optimization of the doping profile of the nanowires and the interface between nanowires and transparent top contact. Here we report on photodetection characteristics associated with doping profile variations in InP nanowire array photodetectors. Bias-dependent tuning of the spectral shape of the responsivity is observed which is attributed to a Schottky-like contact at the nanowire-ITO interface. Angular dependent responsivity measurements, compared with simulated absorption spectra, support this conclusion. Furthermore, electrical simulations unravel the role of possible self-gating effects in the nanowires induced by the ITO/SiO x wrap-gate geometry. Finally, we discuss possible reasons for the observed low saturation current at large forward biases.

7.
Nano Lett ; 16(1): 656-62, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26708274

RESUMO

Nanowires have the potential to play an important role for next-generation light-emitting diodes. In this work, we present a growth scheme for radial nanowire quantum-well structures in the AlGaInP material system using a GaInP nanowire core as a template for radial growth with GaInP as the active layer for emission and AlGaInP as charge carrier barriers. The different layers were analyzed by X-ray diffraction to ensure lattice-matched radial structures. Furthermore, we evaluated the material composition and heterojunction interface sharpness by scanning transmission electron microscopy energy dispersive X-ray spectroscopy. The electro-optical properties were investigated by injection luminescence measurements. The presented results can be a valuable track toward radial nanowire light-emitting diodes in the AlGaInP material system in the red/orange/yellow color spectrum.

8.
Nano Lett ; 15(3): 1809-14, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25671437

RESUMO

We have compared the absorption in InP core-shell nanowire p-i-n junctions in lateral and vertical orientation. Arrays of vertical core-shell nanowires with 400 nm pitch and 280 nm diameter, as well as corresponding lateral single core-shell nanowires, were configured as photovoltaic devices. The photovoltaic characteristics of the samples, measured under 1 sun illumination, showed a higher absorption in lateral single nanowires compared to that in individual vertical nanowires, arranged in arrays with 400 nm pitch. Electromagnetic modeling of the structures confirmed the experimental observations and showed that the absorption in a vertical nanowire in an array depends strongly on the array pitch. The modeling demonstrated that, depending on the array pitch, absorption in a vertical nanowire can be lower or higher than that in a lateral nanowire with equal absorption predicted at a pitch of 510 nm for our nanowire geometry. The technology described in this Letter facilitates quantitative comparison of absorption in laterally and vertically oriented core-shell nanowire p-i-n junctions and can aid in the design, optimization, and performance evaluation of nanowire-based core-shell photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA