Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 27(4): 1205-1218, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38151633

RESUMO

CONTEXT: Pathogens can manipulate microbial interactions to ensure survival, potentially altering the functional patterns and microbiome assembly. The present study investigates how Anaplasma phagocytophilum infection affects the functional diversity, composition, and assembly of the Ixodes scapularis microbiome, with a focus on high central pathways-those characterized by elevated values in centrality metrics such as eigenvector, betweenness, and degree measures, in the microbial community. METHODS: Using previously published data from nymphs' gut V4 region's amplicons of bacterial 16S rRNA, we predicted the functional diversity and composition in control and A. phagocytophilum-infected ticks and inferred co-occurrence networks of taxa and ubiquitous pathways in each condition to associate the high central pathways to the microbial community assembly. RESULTS: Although no differences were observed concerning pathways richness and diversity, there was a significant impact on taxa and functional assembly when ubiquitous pathways in each condition were filtered. Moreover, a notable shift was observed in the microbiome's high central functions. Specifically, pathways related to the degradation of nucleosides and nucleotides emerged as the most central functions in response to A. phagocytophilum infection. This finding suggests a reconfiguration of functional relationships within the microbial community, potentially influenced by the pathogen's limited metabolic capacity. This limitation implies that the tick microbiome may provide additional metabolic resources to support the pathogen's functional needs. CONCLUSIONS: Understanding the metabolic interactions within the tick microbiome can enhance our knowledge of pathogen colonization mechanisms and uncover new disease control and prevention strategies. For example, certain pathways that were more abundant or highly central during infection may represent potential targets for microbiota-based vaccines.


Assuntos
Anaplasma phagocytophilum , Ixodes , Microbiota , RNA Ribossômico 16S , Anaplasma phagocytophilum/fisiologia , Anaplasma phagocytophilum/genética , Animais , Ixodes/microbiologia , RNA Ribossômico 16S/genética , Ehrlichiose/microbiologia , Ninfa/microbiologia , Microbioma Gastrointestinal/fisiologia
2.
BMC Microbiol ; 23(1): 93, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005589

RESUMO

Bat gut microbiomes are adapted to the specific diets of their hosts. Despite diet variation has been associated with differences in bat microbiome diversity, the influence of diet on microbial community assembly have not been fully elucidated. In the present study, we used available data on bat gut microbiome to characterize the microbial community assembly of five selected bat species (i.e., Miniopterus schreibersii, Myotis capaccinii, Myotis myotis, Myotis pilosus, and Myotis vivesi), using network analysis. These bat species with contrasting habitat and food preferences (i.e., My. capaccinii and My. pilosus can be piscivorous and/or insectivorous; Mi. schreibersii and My. myotis are exclusively insectivorous; while My. vivesi is a marine predator) offer an invaluable opportunity to test the impact of diet on bat gut microbiome assembly. The results showed that My. myotis showed the most complex network, with the highest number of nodes, while My. vivesi has the least complex structured microbiome, with lowest number of nodes in its network. No common nodes were observed in the networks of the five bat species, with My. myotis possessing the highest number of unique nodes. Only three bat species, My. myotis, My. pilosus and My. vivesi, presented a core microbiome and the distribution of local centrality measures of nodes was different in the five networks. Taxa removal followed by measurement of network connectivity revealed that My. myotis had the most robust network, while the network of My. vivesi presented the lowest tolerance to taxa removal. Prediction of metabolic pathways using PICRUSt2 revealed that Mi. schreibersii had significantly higher functional pathway's richness compared to the other bat species. Most of predicted pathways (82%, total 435) were shared between all bat species, while My. capaccinii, My. myotis and My. vivesi, but no Mi. schreibersii or My. pilosus, showed specific pathways. We concluded that despite similar feeding habits, microbial community assembly can differ between bat species. Other factors beyond diet may play a major role in bat microbial community assembly, with host ecology, sociality and overlap in roosts likely providing additional predictors governing gut microbiome of insectivorous bats.


Assuntos
Quirópteros , Microbioma Gastrointestinal , Microbiota , Animais , Ecologia , Dieta/veterinária
3.
Mol Ecol ; 32(16): 4660-4676, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37366236

RESUMO

Most tick-borne pathogens (TBPs) are secondarily acquired by ticks during feeding on infected hosts, which imposes 'priority effect' constraints, as arrival order influences the establishment of new species in a microbial community. Here we tested whether once acquired, TBPs contribute to bacterial microbiota functioning by increasing community stability. For this, we used Hyalomma marginatum and Rhipicephalus bursa ticks collected from cattle in different locations of Corsica and combined 16S rRNA amplicon sequencing and co-occurrence network analysis, with high-throughput pathogen detection, and in silico removal of nodes to test for impact of rickettsial pathogens on network properties. Despite its low centrality, Rickettsia showed preferential connections in the networks, notably with a keystone taxon in H. marginatum, suggesting facilitation of Rickettsia colonisation by the keystone taxon. In addition, conserved patterns of community assembly in both tick species were affected by Rickettsia removal, suggesting that privileged connections of Rickettsia in the networks make this taxon a driver of community assembly. However, Rickettsia removal had minor impact on the conserved 'core bacterial microbiota' of H. marginatum and R. bursa. Interestingly, networks of the two tick species with Rickettsia have similar node centrality distribution, a property that is lost after Rickettsia removal, suggesting that this taxon drives specific hierarchical interactions between bacterial microbes in the microbiota. The study indicates that tick-borne Rickettsia play a significant role in the tick bacterial microbiota, despite their low centrality. These bacteria are influential and contribute to the conservation of the 'core bacterial microbiota' while also promoting community stability.


Assuntos
Ixodidae , Rhipicephalus , Rickettsia , Animais , Bovinos , Rhipicephalus/genética , RNA Ribossômico 16S/genética , Rickettsia/genética , Ixodidae/genética , Ixodidae/microbiologia , França
4.
Microb Ecol ; 86(4): 2400-2413, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37249591

RESUMO

Bacterial microbiota play an important role in the fitness of arthropods, but the bacterial microflora in the parasitic mite Dermanyssus gallinae is only partially explored; there are gaps in our understanding of the microbiota localization and in our knowledge of microbial community assembly. In this work, we have visualized, quantified the abundance, and determined the diversity of bacterial occupancy, not only across developmental stages of D. gallinae, but also in the midgut of micro-dissected female D. gallinae mites. We explored community assembly and the presence of keystone taxa, as well as predicted metabolic functions in the microbiome of the mite. The diversity of the microbiota and the complexity of co-occurrence networks decreased with the progression of the life cycle. However, several bacterial taxa were present in all samples examined, indicating a core symbiotic consortium of bacteria. The relatively higher bacterial abundance in adult females, specifically in their midguts, implicates a function linked to the biology of D. gallinae mites. If such an association proves to be important, the bacterial microflora qualifies itself as an acaricidal or vaccine target against this troublesome pest.


Assuntos
Infestações por Ácaros , Ácaros , Doenças das Aves Domésticas , Animais , Feminino , Galinhas/parasitologia , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/prevenção & controle , Ácaros/microbiologia , Estágios do Ciclo de Vida , Bactérias/genética , Infestações por Ácaros/parasitologia , Infestações por Ácaros/prevenção & controle
5.
BMC Vet Res ; 19(1): 239, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978522

RESUMO

BACKGROUND: Dirofilarioses are widespread diseases caused by mosquito-borne nematodes of the family Onchocercidae, genus Dirofilaria. The major etiologic agent of canine dirofilariosis in the American continent is the zoonotic parasite Dirofilaria immitis. Existing reports of filarioid nematodes in Cuba are based solely on morphological and immunological analysis which do not allow unambiguous identification and/or direct detection of causal agents. RESULTS: Here we present the molecular characterization of filarioid nematodes found in a dog in Cuba. Based on the molecular and phylogenetic analysis of the 5.8S-ITS2-28S region and cox1 gene fragments, the worms were unambiguously classified as D. immitis. Sequence analysis showed high identity of the gene fragments in this study with others previously obtained from D. immitis found in dogs, wolfs and jackals but also from mosquito vectors of D. immitis. CONCLUSIONS: Further studies are guarantee to better understand the epidemiological impact of canine dirofilariosis in Cuba as well as the competence of different species of culicid mosquitoes as vectors of Dirofilaria in the country.


Assuntos
Culicidae , Dirofilaria immitis , Dirofilaria repens , Dirofilariose , Doenças do Cão , Animais , Cães , Dirofilaria immitis/genética , Dirofilariose/epidemiologia , Cuba/epidemiologia , Filogenia , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Chacais , Dirofilaria repens/genética
6.
Microb Ecol ; 84(4): 1224-1235, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34817640

RESUMO

Variations in the composition and diversity of tick microbiome due to high temperatures may influence the hierarchy of community members as a response to environmental change. Modifications in the community structure are hypothesized to drive alterations in the presence and/or abundance of functional pathways in the bacterial metagenome. In this study, this hypothesis was tested by using published 16S rRNA datasets of Ixodes scapularis males incubated at different temperatures (i.e., 4, 20, 30, and 37 °C) in a laboratory setting. Changes in community structure and functional profiles in response to temperature shifts were measured using co-occurrence networks and metagenome inference. Results from laboratory-reared ticks were then compared with those of field-collected ticks. The results from laboratory-reared ticks showed that high temperature altered the structure of the microbial community and decreased the number of keystone taxa. Notably, four taxa were identified as keystone in all the temperatures, and the functional diversity of the tick microbiome was contained in the four thermostable keystone their associated bacterial taxa. Three of the thermostable keystone taxa were also found in free-living ticks collected in Massachusetts. Moreover, the comparison of functional profiles of laboratory-reared and field-collected ticks revealed the existence of an important set of metabolic pathways that were common among the different datasets. Similar to the laboratory-reared ticks, the keystone taxa identified in field-collected ticks alongside their consortia (co-occurring taxa) were sufficient to retain the majority of the metabolic pathways in the functional profile. These results suggest that keystone taxa are essential in the stability and the functional resiliency of the tick microbiome under heat stress.


Assuntos
Ixodes , Microbiota , Masculino , Animais , Ixodes/microbiologia , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética , Resposta ao Choque Térmico
7.
Parasitol Res ; 118(3): 955-967, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30693380

RESUMO

Water buffalo is important livestock in several countries in the Latin American and Caribbean regions. This buffalo species can be infected by tick-borne hemoparasites and remains a carrier of these pathogens which represent a risk of infection for more susceptible species like cattle. Therefore, studies on the epidemiology of tick-borne hemoparasites in buffaloes are required. In this study, the prevalence of Babesia bovis, Babesia bigemina, and Anaplasma marginale were determined in water buffalo herds of western Cuba. To this aim, a cross-sectional study covering farms with large buffalo populations in the region was performed. Eight buffalo herds were randomly selected, and blood samples were collected from 328 animals, including 63 calves (3-14 months), 75 young animals (3-5 years), and 190 adult animals (> 5 years). Species-specific nested PCR and indirect ELISA assays were used to determine the molecular and serological prevalences of each hemoparasite, respectively. The molecular and serological prevalence was greater than 50% for the three hemoparasites. Differences were found in infection prevalence among buffalo herds, suggesting that local epidemiological factors may influence infection risk. Animals of all age groups were infected, with a higher molecular prevalence of B. bigemina and A. marginale in young buffalo and calves, respectively, while a stepwise increase in seroprevalence of B. bovis and B. bigemina from calves to adult buffaloes was found. The co-infection by the three pathogens was found in 12% of animals, and when analyzed by pair, the co-infections of B. bovis and B. bigemina, B. bigemina and A. marginale, and B. bovis and A. marginale were found in 20%, 24%, and 26%, respectively, underlying the positive interaction between these pathogens infecting buffaloes. These results provide evidence that tick-borne pathogen infections can be widespread among water buffalo populations in tropical livestock ecosystems. Further studies should evaluate whether these pathogens affect the health status and productive performance of water buffalo and infection risk of these pathogens in cattle cohabiting with buffalo.


Assuntos
Anaplasma marginale , Anaplasmose/complicações , Babesia , Babesiose/parasitologia , Búfalos/parasitologia , Anaplasmose/epidemiologia , Animais , Babesiose/complicações , Babesiose/epidemiologia , Bovinos , Coinfecção , Estudos Transversais , Cuba/epidemiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Filogenia , Reação em Cadeia da Polimerase , Estudos Soroepidemiológicos , Carrapatos
8.
Travel Med Infect Dis ; 58: 102697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369074

RESUMO

BACKGROUND: Rabies remains a deadly zoonotic disease, primarily prevalent in Eastern European countries, with a significant global burden in Asia and Africa. Post-exposure prophylaxis (PEP) is critical to prevent clinical rabies. Serbia, a country with a relatively low animal rabies incidence, has been implementing a 4-dose Essen PEP regimen for 13 years. This real-world study aimed to assess the effectiveness of the 4-dose Essen regimen, considering demographic and clinical factors, after WHO Category III exposure. METHOD: The study included 601 patients who received the 4-dose Essen PEP and 79 who received an additional 5th dose. RESULTS: Age emerged as a critical factor influencing seroconversion rates after the 4-dose regimen, with older individuals exhibiting lower RVNA titers. Logistic regression indicated a 3.18% decrease in seroconversion odds for each added year of age. The Cox proportional hazards mixed model highlighted age-related risks, with age groups 45-60 and 75-92 at the highest risk of non-seroconversion. Human Rabies Immune Globulin (HRIG) administration was associated with lower RVNA values after the 4-dose regimen, suggesting interference with vaccine immunogenicity among people who received larger doses of HRIG. CONCLUSIONS: This study provides valuable real-world evidence for rabies PEP in a non-homogeneous population with potential comorbidities. The results underscore the importance of optimizing PEP strategies, particularly in older individuals, and reconsidering HRIG dosing to improve seroconversion rates.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Humanos , Idoso , Raiva/epidemiologia , Raiva/prevenção & controle , Profilaxia Pós-Exposição , Sérvia/epidemiologia , Anticorpos Antivirais
9.
Heliyon ; 10(4): e26118, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375245

RESUMO

In recent decades, tick-borne diseases (TBDs) have surged and expanded globally due to factors like changes in human activities, land use patterns, and climate change, and it have been associated with the emergence of zoonotic diseases. Cuba faces the impact of ticks on human health and the economy. Although Cuba has studied TBDs extensively for the past 50 years, focus on tick-borne viral pathogens affecting humans remains scant. Despite TBDs not currently being a major health concern in Cuba, factors like inadequate clinician awareness, climate conditions, global tick emergence, and evidence of zoonotic pathogens in ticks underscore the importance of enhanced TBD surveillance in the country. Here we revised the available information on ticks as vectors of pathogenic viruses to humans, spotlighting bats as potential reservoirs of tick-borne viruses (TBVs). Ticks on bats have gained interest as potential reservoirs of pathogenic viruses to humans in Cuba and worldwide. Understanding their role in maintaining viruses and their potential transmission to humans is crucial for the implementation of surveillance and control programs to reduce the risk of tick-borne viral diseases and public health management.

10.
Pathogens ; 13(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276164

RESUMO

Avian malaria infection has been known to affect host microbiota, but the impact of Plasmodium infection on the colonization resistance in bird gut microbiota remains unexplored. This study investigated the dynamics of Plasmodium relictum infection in canaries, aiming to explore the hypothesis that microbiota modulation by P. relictum would reduce colonization resistance. Canaries were infected with P. relictum, while a control group was maintained. The results revealed the presence of P. relictum in the blood of all infected canaries. Analysis of the host microbiota showed no significant differences in alpha diversity metrics between infected and control groups. However, significant differences in beta diversity indicated alterations in the microbial taxa composition of infected birds. Differential abundance analysis identified specific taxa with varying prevalence between infected and control groups at different time points. Network analysis demonstrated a decrease in correlations and revealed that P. relictum infection compromised the bird microbiota's ability to resist the removal of taxa but did not affect network robustness with the addition of new nodes. These findings suggest that P. relictum infection reduces gut microbiota stability and has an impact on colonization resistance. Understanding these interactions is crucial for developing strategies to enhance colonization resistance and maintain host health in the face of parasitic infections.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38765730

RESUMO

Upon ingestion from an infected host, tick-borne pathogens (TBPs) have to overcome colonization resistance, a defense mechanism by which tick microbiota prevent microbial invasions. Previous studies have shown that the pathogen Anaplasma phagocytophilum alters the microbiota composition of the nymphs of Ixodes scapularis, but its impact on tick colonization resistance remains unclear. We analyzed tick microbiome genetic data using published Illumina 16S rRNA sequences, assessing microbial diversity within ticks (alpha diversity) through species richness, evenness, and phylogenetic diversity. We compared microbial communities in ticks with and without infection with A. phagocytophilum (beta diversity) using the Bray-Curtis index. We also built co-occurrence networks and used node manipulation to study the impact of A. phagocytophilum on microbial assembly and network robustness, crucial for colonization resistance. We examined network robustness by altering its connectivity, observing changes in the largest connected component (LCC) and the average path length (APL). Our findings revealed that infection with A. phagocytophilum does not significantly alter the overall microbial diversity in ticks. Despite a decrease in the number of nodes and connections within the microbial networks of infected ticks, certain core microbes remained consistently interconnected, suggesting a functional role. The network of infected ticks showed a heightened vulnerability to node removal, with smaller LCC and longer APL, indicating reduced resilience compared to the network of uninfected ticks. Interestingly, adding nodes to the network of infected ticks led to an increase in LCC and a decrease in APL, suggesting a recovery in network robustness, a trend not observed in networks of uninfected ticks. This improvement in network robustness upon node addition hints that infection with A. phagocytophilum might lower ticks' resistance to colonization, potentially facilitating further microbial invasions. We conclude that the compromised colonization resistance observed in tick microbiota following infection with A. phagocytophilum may facilitate co-infection in natural tick populations.

12.
Ecol Evol ; 14(4): e11228, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38571811

RESUMO

Interactions within the tick microbiome involving symbionts, commensals, and tick-borne pathogens (TBPs) play a pivotal role in disease ecology. This study explored temporal changes in the microbiome of Rhipicephalus microplus, an important cattle tick vector, focusing on its interaction with Anaplasma marginale. To overcome limitations inherent in sampling methods relying on questing ticks, which may not consistently reflect pathogen presence due to variations in exposure to infected hosts in nature, our study focused on ticks fed on chronically infected cattle. This approach ensures continuous pathogen exposure, providing a more comprehensive understanding of the nesting patterns of A. marginale in the R. microplus microbiome. Using next-generation sequencing, microbiome dynamics were characterized over 2 years, revealing significant shifts in diversity, composition, and abundance. Anaplasma marginale exhibited varying associations, with its increased abundance correlating with reduced microbial diversity. Co-occurrence networks demonstrated Anaplasma's evolving role, transitioning from diverse connections to keystone taxa status. An integrative approach involving in silico node removal unveils the impact of Anaplasma on network stability, highlighting its role in conferring robustness to the microbial community. This study provides insights into the intricate interplay between the tick microbiome and A. marginale, shedding light on potential avenues for controlling bovine anaplasmosis through microbiome manipulation.

13.
Microbiol Res ; 286: 127790, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38851009

RESUMO

Understanding the intricate ecological interactions within the microbiome of arthropod vectors is crucial for elucidating disease transmission dynamics and developing effective control strategies. In this study, we investigated the ecological roles of Coxiella-like endosymbiont (CLE) and Anaplasma marginale across larval, nymphal, and adult stages of Rhipicephalus microplus. We hypothesized that CLE would show a stable, nested pattern reflecting co-evolution with the tick host, while A. marginale would exhibit a more dynamic, non-nested pattern influenced by environmental factors and host immune responses. Our findings revealed a stable, nested pattern characteristic of co-evolutionary mutualism for CLE, occurring in all developmental stages of the tick. Conversely, A. marginale exhibited variable occurrence but exerted significant influence on microbial community structure, challenging our initial hypotheses of its non-nested dynamics. Furthermore, in silico removal of both microbes from the co-occurrence networks altered network topology, underscoring their central roles in the R. microplus microbiome. Notably, competitive interactions between CLE and A. marginale were observed in nymphal network, potentially reflecting the impact of CLE on the pathogen transstadial-transmission. These findings shed light on the complex ecological dynamics within tick microbiomes and have implications for disease management strategies.


Assuntos
Anaplasma marginale , Coxiella , Larva , Rhipicephalus , Simbiose , Animais , Rhipicephalus/microbiologia , Coxiella/genética , Larva/microbiologia , Larva/crescimento & desenvolvimento , Microbiota , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento
14.
Parasit Vectors ; 17(1): 5, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178247

RESUMO

BACKGROUND: Ixodid ticks, particularly Rhipicephalus sanguineus s.l., are important vectors of various disease-causing agents in dogs and humans in Cuba. However, our understading of interactions among tick-borne pathogens (TBPs) in infected dogs or the vector R. sanguineus s.l. remains limited. This study integrates microfluidic-based high-throughput real-time PCR data, Yule's Q statistic, and network analysis to elucidate pathogen-pathogen interactions in dogs and ticks in tropical western Cuba. METHODS: A cross-sectional study involving 46 client-owned dogs was conducted. Blood samples were collected from these dogs, and ticks infesting the same dogs were morphologically and molecularly identified. Nucleic acids were extracted from both canine blood and tick samples. Microfluidic-based high-throughput real-time PCR was employed to detect 25 bacterial species, 10 parasite species, 6 bacterial genera, and 4 parasite taxa, as well as to confirm the identity of the collected ticks. Validation was performed through end-point PCR assays and DNA sequencing analysis. Yule's Q statistic and network analysis were used to analyse the associations between different TBP species based on binary presence-absence data. RESULTS: The study revealed a high prevalence of TBPs in both dogs and R. sanguineus s.l., the only tick species found on the dogs. Hepatozoon canis and Ehrlichia canis were among the most common pathogens detected. Co-infections were observed, notably between E. canis and H. canis. Significant correlations were found between the presence of Anaplasma platys and H. canis in both dogs and ticks. A complex co-occurrence network among haemoparasite species was identified, highlighting potential facilitative and inhibitory roles. Notably, H. canis was found as a highly interconnected node, exhibiting significant positive associations with various taxa, including A. platys, and E. canis, suggesting facilitative interactions among these pathogens. Phylogenetic analysis showed genetic diversity in the detected TBPs. CONCLUSIONS: Overall, this research enhances our understanding of TBPs in Cuba, providing insights into their prevalence, associations, and genetic diversity, with implications for disease surveillance and management.


Assuntos
Doenças do Cão , Rhipicephalus sanguineus , Doenças Transmitidas por Carrapatos , Humanos , Animais , Cães , Filogenia , Estudos Transversais , Microfluídica , Anaplasma/genética , Ehrlichia canis/genética , Rhipicephalus sanguineus/microbiologia , Reação em Cadeia da Polimerase , Doenças do Cão/parasitologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia
15.
Pathogens ; 12(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37242303

RESUMO

Ticks are obligate blood-feeding ectoparasites of mammals, birds, and reptiles, which are globally important vectors of pathogens that impact both human and animal health [...].

16.
Acta Trop ; 238: 106756, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36435213

RESUMO

The tick-borne pathogens (TBPs) with adhesive phenotype can use platelets for dissemination and colonization of distant tissues and organs, and it has been shown that they can be found concentrated in the platelet fraction of blood. This study shows the differential presence of TBPs in samples of human platelet fraction (n = 68), whole blood samples (n = 68) and ticks collected (n = 76) from the same individuals, using an unbiased high-throughput pathogen detection microfluidic system. The clinical symptoms were characterized in enrolled patients. In patients with suspected TBP infection, serological assays were conducted to test for the presence of antibodies against specific TBPs. Tick species infesting humans were identified as Ixodes ricinus, Dermacentor reticulatus, and Haemaphysalis punctata. Eight patients developed local skin lesions at the site of the tick bite including non-specific lesions, itching sensation at the lesion site, and eschar. Most common TBPs detected in platelet fraction were Borrelia spielmanii and Rickettsia sp., followed by Borrelia afzelii and Anaplasma phagocytophilum. Multiple infections with three TBPs were detected in platelet fraction. In whole blood, most common TBPs detected were Anaplasma spp. and A. phagocytophilum, followed by Rickettsia spp. and B. afzelii. In ticks, the most common TBP detected was Rickettsia spp., followed by Borrelia spp. and Anaplasma spp. Overall, nine different pathogens with variable prevalence were identified using species-specific primers, and the most common was Rickettsia helvetica. In three patients, there were no coincidences between the TBPs detected in whole blood and tick samples. Only in one patient was detected A. phagocytophilum in both, whole blood and tick samples. These results suggest the unequal detection of TBPs in whole blood, platelet fraction and ticks collected, from the same individual. The results justify the use of both whole blood and platelet fraction for molecular diagnosis of TBPs in patients.


Assuntos
Borrelia , Ixodes , Ixodidae , Rickettsia , Doenças Transmitidas por Carrapatos , Animais , Humanos , Microfluídica , Rickettsia/genética , Ixodes/microbiologia , Borrelia/genética , Ixodidae/genética , Anaplasma/genética , Reação em Cadeia da Polimerase , Doenças Transmitidas por Carrapatos/epidemiologia
17.
Sci Rep ; 13(1): 10645, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391552

RESUMO

Ixodes ricinus and Dermacentor reticulatus ticks are important reservoirs and vectors of pathogens. The aim of the present study was to investigate the dynamic of the prevalence and genetic diversity of microorganisms detected in these tick species collected from two ecologically diverse biotopes undergoing disparate long-term climate condition. High-throughput real time PCR confirmed high prevalence of microorganisms detected in sympatrically occurring ticks species. D. reticulatus specimens were the most often infected with Francisella-like endosymbiont (FLE) (up to 100.0%) and Rickettsia spp. (up to 91.7%), while in case of I. ricinus the prevalence of Borreliaceae spirochetes reached up to 25.0%. Moreover, pathogens belonging to genera of Bartonella, Anaplasma, Ehrlichia and Babesia were detected in both tick species regardless the biotope. On the other hand, Neoehrlichia mikurensis was conformed only in I. ricinus in the forest biotope, while genetic material of Theileria spp. was found only in D. reticulatus collected from the meadow. Our study confirmed significant impact of biotope type on prevalence of representatives of Borreliaceae and Rickettsiaceae families. The most common co-infection detected in D. reticulatus was Rickettsia spp. + FLE, while Borreliaceae + R. helvetica was the most common in I. ricinus. Additionally, we found significant genetic diversity of R. raoultii gltA gene across studied years, however such relationship was not observed in ticks from studied biotopes. Our results suggest that ecological type of biotope undergoing disparate long-term climate conditions have an impact on prevalence of tick-borne pathogens in adult D. reticulatus and I. ricinus.


Assuntos
Dermacentor , Francisella , Ixodes , Rickettsia , Humanos , Adulto , Animais , Prevalência , Florestas , Anaplasma , Rickettsia/genética
18.
Pathogens ; 12(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37623970

RESUMO

Anaplasma marginale is an obligate intraerythrocytic bacterium of bovines, responsible for large economic losses worldwide. It is mainly transmitted by Rhipicephalus (Boophilus) microplus ticks and, despite mounting evidence suggesting transovarial transmission, the occurrence of this phenomenon remains controversial. We evaluated the vector competence of R. microplus larvae vertically infected with A. marginale to transmit the bacterium to a naïve bovine. A subgroup of engorged female ticks collected from an A. marginale-positive animal was dissected and the presence of the pathogen in its tissues was confirmed. A second subgroup of ticks was placed under controlled conditions for oviposition. After confirming the presence of A. marginale in the hatched larvae, an experimental infestation assay was conducted. Larvae were placed on an A. marginale-free splenectomized calf. The bacterium was detected in the experimentally infested bovine 22 days post-infestation. We analyzed the A. marginale diversity throughout the transmission cycle using the molecular marker MSP1a. Different genotypes were detected in the mammalian and arthropod hosts showing a reduction of strain diversity along the transmission process. Our results demonstrate the vertical transmission of A. marginale from R. microplus females to its larvae, their vector competence to transmit the pathogen, and a bottleneck in A. marginale strain diversity.

19.
Front Microbiol ; 14: 1247719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860133

RESUMO

The gut microbiota plays a crucial role in animal health and homeostasis, particularly in endangered species conservation. This study investigated the fecal microbiota composition of European captive-bred African savanna elephants (Loxodonta africana) housed in French zoos, and compared it with wild African savanna elephants. Fecal samples were collected and processed for DNA extraction and amplicon sequencing of the 16S rRNA gene. The analysis of α and ß diversity revealed significant effects of factors such as diet, daily activity, and institution on microbiota composition. Specifically, provision of branches as part of the diet positively impacted microbiota diversity. Comparative analyses demonstrated distinct differences between captive and wild elephant microbiomes, characterized by lower bacterial diversity and altered co-occurrence patterns in the captive population. Notably, specific taxa were differentially abundant in captive and wild elephants, suggesting the influence of the environment on microbiota composition. Furthermore, the study identified a core association network shared by both captive and wild elephants, emphasizing the importance of certain taxa in maintaining microbial interactions. These findings underscore the impact of environment and husbandry factors on elephant gut microbiota, highlighting the benefits of dietary enrichment strategies in zoos to promote microbiome diversity and health. The study contributes to the broader understanding of host-microbiota interactions and provides insights applicable to conservation medicine and captive animal management.

20.
Microorganisms ; 11(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36985137

RESUMO

Rodent and human malaria parasites cause dysbiosis in the host gut microbiome, but whether Plasmodium species affecting birds cause dysbiosis in their hosts is currently unknown. Here we used a model of avian malaria infection to test whether parasite infection modulates the bird microbiome. To this aim, bird fecal microbiomes were characterized at different time points after infection of canaries with the avian malaria parasite Plasmodium homocircumflexum. Avian malaria caused no significant changes in the alpha and beta diversity of the microbiome in infected birds. In contrast, we discovered changes in the composition and abundance of several taxa. Co-occurrence networks were used to characterize the assembly of the microbiome and trajectories of microbiome structural states progression were found to be different between infected and uninfected birds. Prediction of functional profiles in bacterial communities using PICRUSt2 showed infection by P. homocircumflexum to be associated with the presence of specific degradation and biosynthesis metabolic pathways, which were not found in healthy birds. Some of the metabolic pathways with decreased abundance in the infected group had significant increase in the later stage of infection. The results showed that avian malaria parasites affect bacterial community assembly in the host gut microbiome. Microbiome modulation by malaria parasites could have deleterious consequences for the host bird. Knowing the intricacies of bird-malaria-microbiota interactions may prove helpful in determining key microbial players and informing interventions to improve animal health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA