Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(10): 1793-1805.e17, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483372

RESUMO

The lack of tools to observe drug-target interactions at cellular resolution in intact tissue has been a major barrier to understanding in vivo drug actions. Here, we develop clearing-assisted tissue click chemistry (CATCH) to optically image covalent drug targets in intact mammalian tissues. CATCH permits specific and robust in situ fluorescence imaging of target-bound drug molecules at subcellular resolution and enables the identification of target cell types. Using well-established inhibitors of endocannabinoid hydrolases and monoamine oxidases, direct or competitive CATCH not only reveals distinct anatomical distributions and predominant cell targets of different drug compounds in the mouse brain but also uncovers unexpected differences in drug engagement across and within brain regions, reflecting rare cell types, as well as dose-dependent target shifts across tissue, cellular, and subcellular compartments that are not accessible by conventional methods. CATCH represents a valuable platform for visualizing in vivo interactions of small molecules in tissue.


Assuntos
Química Click , Imagem Óptica , Animais , Encéfalo , Sistemas de Liberação de Medicamentos , Mamíferos , Camundongos , Imagem Óptica/métodos
2.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37084731

RESUMO

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Assuntos
Proteômica , Fatores de Transcrição , Humanos , Proteômica/métodos , Cisteína/metabolismo , Ligantes
3.
Nat Chem Biol ; 19(11): 1320-1330, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783940

RESUMO

Covalent chemistry represents an attractive strategy for expanding the ligandability of the proteome, and chemical proteomics has revealed numerous electrophile-reactive cysteines on diverse human proteins. Determining which of these covalent binding events affect protein function, however, remains challenging. Here we describe a base-editing strategy to infer the functionality of cysteines by quantifying the impact of their missense mutation on cancer cell proliferation. The resulting atlas, which covers more than 13,800 cysteines on more than 1,750 cancer dependency proteins, confirms the essentiality of cysteines targeted by covalent drugs and, when integrated with chemical proteomic data, identifies essential, ligandable cysteines in more than 160 cancer dependency proteins. We further show that a stereoselective and site-specific ligand targeting an essential cysteine in TOE1 inhibits the nuclease activity of this protein through an apparent allosteric mechanism. Our findings thus describe a versatile method and valuable resource to prioritize the pursuit of small-molecule probes with high function-perturbing potential.


Assuntos
Cisteína , Neoplasias , Humanos , Cisteína/química , Proteômica , Edição de Genes , Proteoma/química , Neoplasias/genética , Proteínas Nucleares
4.
Brain ; 145(10): 3383-3390, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35737950

RESUMO

The endocannabinoid system is a highly conserved and ubiquitous signalling pathway with broad-ranging effects. Despite critical pathway functions, gene variants have not previously been conclusively linked to human disease. We identified nine children from eight families with heterozygous, de novo truncating variants in the last exon of DAGLA with a neuro-ocular phenotype characterized by developmental delay, ataxia and complex oculomotor abnormality. All children displayed paroxysms of nystagmus or eye deviation accompanied by compensatory head posture and worsened incoordination most frequently after waking. RNA sequencing showed clear expression of the truncated transcript and no differences were found between mutant and wild-type DAGLA activity. Immunofluorescence staining of patient-derived fibroblasts and HEK cells expressing the mutant protein showed distinct perinuclear aggregation not detected in control samples. This report establishes truncating variants in the last DAGLA exon as the cause of a unique paediatric syndrome. Because enzymatic activity was preserved, the observed mislocalization of the truncated protein may account for the observed phenotype. Potential mechanisms include DAGLA haploinsufficiency at the plasma membrane or dominant negative effect. To our knowledge, this is the first report directly linking an endocannabinoid system component with human genetic disease and sets the stage for potential future therapeutic avenues.


Assuntos
Endocanabinoides , Doenças do Sistema Nervoso , Humanos , Criança , Fenótipo , Doenças do Sistema Nervoso/genética , Heterozigoto , Síndrome , Proteínas Mutantes
5.
Angew Chem Int Ed Engl ; 62(51): e202311924, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37909922

RESUMO

5-Methylcytosine (m5 C) is an RNA modification prevalent on tRNAs, where it can protect tRNAs from endonucleolytic cleavage to maintain protein synthesis. The NSUN family (NSUN1-7 in humans) of RNA methyltransferases are capable of installing the methyl group onto the C5 position of cytosines in RNA. NSUNs are implicated in a wide range of (patho)physiological processes, but selective and cell-active inhibitors of these enzymes are lacking. Here, we use cysteine-directed activity-based protein profiling (ABPP) to discover azetidine acrylamides that act as stereoselective covalent inhibitors of human NSUN2. Despite targeting a conserved catalytic cysteine in the NSUN family, the NSUN2 inhibitors show negligible cross-reactivity with other human NSUNs and exhibit good proteome-wide selectivity. We verify that the azetidine acrylamides inhibit the catalytic activity of recombinant NSUN2, but not NSUN6, and demonstrate that these compounds stereoselectively disrupt NSUN2-tRNA interactions in cancer cells, leading to a global reduction in tRNA m5 C content. Our findings thus highlight the potential to create isotype-selective and cell-active inhibitors of NSUN2 with covalent chemistry targeting a conserved catalytic cysteine.


Assuntos
Azetidinas , Inibidores Enzimáticos , Metiltransferases , tRNA Metiltransferases , Humanos , Acrilamidas , Cisteína/metabolismo , Metilação , Metiltransferases/antagonistas & inibidores , Proteômica , RNA de Transferência/química , tRNA Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia
6.
Nat Chem Biol ; 16(9): 997-1005, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514184

RESUMO

Activity-based protein profiling (ABPP) has been used extensively to discover and optimize selective inhibitors of enzymes. Here, we show that ABPP can also be implemented to identify the converse-small-molecule enzyme activators. Using a kinetically controlled, fluorescence polarization-ABPP assay, we identify compounds that stimulate the activity of LYPLAL1-a poorly characterized serine hydrolase with complex genetic links to human metabolic traits. We apply ABPP-guided medicinal chemistry to advance a lead into a selective LYPLAL1 activator suitable for use in vivo. Structural simulations coupled to mutational, biochemical and biophysical analyses indicate that this compound increases LYPLAL1's catalytic activity likely by enhancing the efficiency of the catalytic triad charge-relay system. Treatment with this LYPLAL1 activator confers beneficial effects in a mouse model of diet-induced obesity. These findings reveal a new mode of pharmacological regulation for this large enzyme family and suggest that ABPP may aid discovery of activators for additional enzyme classes.


Assuntos
Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia , Lisofosfolipase/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Descoberta de Drogas , Ativadores de Enzimas/farmacocinética , Polarização de Fluorescência , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Resistência à Insulina , Lisofosfolipase/química , Lisofosfolipase/genética , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Simulação de Dinâmica Molecular , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Relação Estrutura-Atividade
7.
Nat Chem Biol ; 16(6): 667-675, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393901

RESUMO

N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inibidores Enzimáticos/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Fosfatidiletanolaminas/metabolismo , Fosfolipase D/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Antagonistas de Receptores de Canabinoides/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Medo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Receptores de Canabinoides/metabolismo , Transdução de Sinais
8.
Acta Pharmacol Sin ; 43(11): 3002-3010, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35513432

RESUMO

Monoacylglycerol lipase (MAGL) constitutes a serine hydrolase that orchestrates endocannabinoid homeostasis and exerts its function by catalyzing the degradation of 2-arachidonoylglycerol (2-AG) to arachidonic acid (AA). As such, selective inhibition of MAGL represents a potential therapeutic and diagnostic approach to various pathologies including neurodegenerative disorders, metabolic diseases and cancers. Based on a unique 4-piperidinyl azetidine diamide scaffold, we developed a reversible and peripheral-specific radiofluorinated MAGL PET ligand [18F]FEPAD. Pharmacokinetics and binding studies on [18F]FEPAD revealed its outstanding specificity and selectivity towards MAGL in brown adipose tissue (BAT) - a tissue that is known to be metabolically active. We employed [18F]FEPAD in PET studies to assess the abundancy of MAGL in BAT deposits of mice and found a remarkable degree of specific tracer binding in the BAT, which was confirmed by post-mortem tissue analysis. Given the negative regulation of endocannabinoids on the metabolic BAT activity, our study supports the concept that dysregulation of MAGL is likely linked to metabolic disorders. Further, we now provide a suitable imaging tool that allows non-invasive assessment of MAGL in BAT deposits, thereby paving the way for detailed mechanistic studies on the role of BAT in endocannabinoid system (ECS)-related pathologies.


Assuntos
Endocanabinoides , Monoacilglicerol Lipases , Endocanabinoides/metabolismo , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ligantes , Inibidores Enzimáticos/farmacologia
9.
Proc Natl Acad Sci U S A ; 116(49): 24770-24778, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740614

RESUMO

Fatty acid amide hydrolase (FAAH) degrades 2 major classes of bioactive fatty acid amides, the N-acylethanolamines (NAEs) and N-acyl taurines (NATs), in central and peripheral tissues. A functional polymorphism in the human FAAH gene is linked to obesity and mice lacking FAAH show altered metabolic states, but whether these phenotypes are caused by elevations in NAEs or NATs is unknown. To overcome the problem of concurrent elevation of NAEs and NATs caused by genetic or pharmacological disruption of FAAH in vivo, we developed an engineered mouse model harboring a single-amino acid substitution in FAAH (S268D) that selectively disrupts NAT, but not NAE, hydrolytic activity. The FAAH-S268D mice accordingly show substantial elevations in NATs without alterations in NAE content, a unique metabolic profile that correlates with heightened insulin sensitivity and GLP-1 secretion. We also show that N-oleoyl taurine (C18:1 NAT), the most abundant NAT in human plasma, decreases food intake, improves glucose tolerance, and stimulates GPR119-dependent GLP-1 and glucagon secretion in mice. Together, these data suggest that NATs act as a class of lipid messengers that improve postprandial glucose regulation and may have potential as investigational metabolites to modify metabolic disease.


Assuntos
Amidoidrolases/genética , Glicemia/metabolismo , Síndrome Metabólica/metabolismo , Ácidos Oleicos/metabolismo , Taurina/análogos & derivados , Amidoidrolases/metabolismo , Substituição de Aminoácidos , Animais , Glicemia/análise , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Etanolaminas/sangue , Etanolaminas/metabolismo , Feminino , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Humanos , Injeções Intravenosas , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Ácidos Oleicos/administração & dosagem , Ácidos Oleicos/sangue , Período Pós-Prandial/efeitos dos fármacos , Período Pós-Prandial/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Taurina/administração & dosagem , Taurina/sangue , Taurina/metabolismo
10.
Nat Chem Biol ; 15(5): 453-462, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30911178

RESUMO

Phenotypic screening has identified small-molecule modulators of aging, but the mechanism of compound action often remains opaque due to the complexities of mapping protein targets in whole organisms. Here, we combine a library of covalent inhibitors with activity-based protein profiling to coordinately discover bioactive compounds and protein targets that extend lifespan in Caenorhabditis elegans. We identify JZL184-an inhibitor of the mammalian endocannabinoid (eCB) hydrolase monoacylglycerol lipase (MAGL or MGLL)-as a potent inducer of longevity, a result that was initially perplexing as C. elegans does not possess an MAGL ortholog. We instead identify FAAH-4 as a principal target of JZL184 and show that this enzyme, despite lacking homology with MAGL, performs the equivalent metabolic function of degrading eCB-related monoacylglycerides in C. elegans. Small-molecule phenotypic screening thus illuminates pure pharmacological connections marking convergent metabolic functions in distantly related organisms, implicating the FAAH-4/monoacylglyceride pathway as a regulator of lifespan in C. elegans.


Assuntos
Benzodioxóis/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Endocanabinoides/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Longevidade/efeitos dos fármacos , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Benzodioxóis/química , Caenorhabditis elegans/metabolismo , Endocanabinoides/metabolismo , Inibidores Enzimáticos/química , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Piperidinas/química
11.
J Neurosci ; 39(30): 5949-5965, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127001

RESUMO

Diacylglycerol lipase-α (DAGL-α), the principal biosynthetic enzyme of the endogenous cannabinoid 2-arachidonylglycerol (2-AG) on neurons, plays a key role in CB1 receptor-mediated synaptic plasticity and hippocampal neurogenesis, but its contribution to global hippocampal-mediated processes remains unknown. Thus, the present study examines the role that DAGL-α plays on LTP in hippocampus, as well as in hippocampal-dependent spatial learning and memory tasks, and on the production of endocannabinoid and related lipids through the use of complementary pharmacologic and genetic approaches to disrupt this enzyme in male mice. Here we show that DAGL-α gene deletion or pharmacological inhibition disrupts LTP in CA1 of the hippocampus but elicits varying magnitudes of behavioral learning and memory deficits in mice. In particular, DAGL-α-/- mice display profound impairments in the Object Location assay and Morris Water Maze (MWM) acquisition engaging in nonspatial search strategies. In contrast, WT mice administered the DAGL-α inhibitor DO34 show delays in MWM acquisition and reversal learning, but no deficits in expression, extinction, forgetting, or perseveration processes in this task, as well as no impairment in Object Location. The deficits in synaptic plasticity and MWM performance occur in concert with decreased 2-AG and its major lipid metabolite (arachidonic acid), but increases of a 2-AG diacylglycerol precursor in hippocampus, PFC, striatum, and cerebellum. These novel behavioral and electrophysiological results implicate a direct and perhaps selective role of DAGL-α in the integration of new spatial information.SIGNIFICANCE STATEMENT Here we show that genetic deletion or pharmacologic inhibition of diacylglycerol lipase-α (DAGL-α) impairs hippocampal CA1 LTP, differentially disrupts spatial learning and memory performance in Morris water maze (MWM) and Object Location tasks, and alters brain levels of endocannabinoids and related lipids. Whereas DAGL-α-/- mice exhibit profound phenotypic spatial memory deficits, a DAGL inhibitor selectively impairs the integration of new information in MWM acquisition and reversal tasks, but not memory processes of expression, extinction, forgetting, or perseveration, and does not affect performance in the Objection Location task. The findings that constitutive or short-term DAGL-α disruption impairs learning and memory at electrophysiological and selective in vivo levels implicate this enzyme as playing a key role in the integration of new spatial information.


Assuntos
Hipocampo/metabolismo , Lipase Lipoproteica/metabolismo , Memória , Aprendizagem Espacial , Animais , Ácido Araquidônico/metabolismo , Hipocampo/fisiologia , Lipase Lipoproteica/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Biochemistry ; 59(19): 1793-1799, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32364701

RESUMO

PHARC (polyneuropathy, hearing loss, cerebellar ataxia, retinitis pigmentosa, and cataract) is a human neurological disorder caused by deleterious mutations in the ABHD12 gene, which encodes an integral membrane lyso-phosphatidylserine (lyso-PS) lipase. Pharmacological or genetic disruption of ABHD12 leads to higher levels of lyso-PS lipids in human cells and the central nervous system (CNS) of mice. ABHD12 loss also causes rapid rewiring of PS content, resulting in selective increases in the level of arachidonoyl (C20:4) PS and decreases in the levels of other PS species. The biochemical basis for ABHD12-dependent PS remodeling and its pathophysiological significance remain unknown. Here, we show that genetic deletion of the lysophospholipid acyltransferase LPCAT3 blocks accumulation of brain C20:4 PS in mice lacking ABHD12 and concurrently produces hyper-increases in the level of lyso-PS in these animals. These lipid changes correlate with exacerbated auditory dysfunction and brain microgliosis in mice lacking both ABHD12 and LPCAT3. Taken together, our findings reveal that ABHD12 and LPCAT3 coordinately regulate lyso-PS and C20:4 PS content in the CNS and point to lyso-PS lipids as the likely bioactive metabolites contributing to PHARC-related neuropathologies.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Monoacilglicerol Lipases/metabolismo , Doenças do Sistema Nervoso/metabolismo , Fosfatidilserinas/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/deficiência , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Camundongos , Camundongos Knockout , Estrutura Molecular , Monoacilglicerol Lipases/deficiência , Monoacilglicerol Lipases/genética
13.
Exp Eye Res ; 201: 108266, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979397

RESUMO

Cannabinoids are part of an endogenous signaling system found throughout the body, including the eye. Hepler and Frank showed in the early 1970s that plant cannabinoids can lower intraocular pressure (IOP), an effect since shown to occur via cannabinoid CB1 and GPR18 receptors. Endocannabinoids are synthesized and metabolized enzymatically. Enzymes implicated in endocannabinoids breakdown include monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), but also ABHD12, NAAA, and COX-2. Inhibition of MAGL activity raises levels of the endocannabinoid 2-arachidonoyl glycerol and substantially lowers IOP. Blocking other cannabinoid metabolizing enzymes or cannabinoid transporters may similarly contribute to lowering IOP and so serve as therapeutic targets for treating glaucoma. We have tested blockers for several cannabinoid-metabolizing enzymes and transporters (FABP5 and membrane reuptake) for their ability to alter ocular pressure in a murine model of IOP. Of FAAH, ABHD12, NAAA, and COX2, only FAAH was seen to play a role in regulation of IOP. Only the FAAH blocker URB597 lowered IOP, but in a temporally, diurnally, and sex-specific manner. We also tested two blockers of cannabinoid transport (SBFI-26 and WOBE437), finding that each lowered IOP in a CB1-dependent manner. Though we see a modest, limited role for FAAH, our results suggest that MAGL is the primary cannabinoid-metabolizing enzyme in regulating ocular pressure, thus pointing towards a role of 2-arachidonoyl glycerol. Interestingly, inhibition of cannabinoid transport mechanisms independent of hydrolysis may prove to be an alternative strategy to lower ocular pressure.


Assuntos
Endocanabinoides/metabolismo , Pressão Intraocular/fisiologia , Hipertensão Ocular/metabolismo , Animais , Modelos Animais de Doenças , Transporte de Íons , Camundongos , Camundongos Endogâmicos C57BL , Hipertensão Ocular/fisiopatologia
14.
Nat Chem Biol ; 14(12): 1099-1108, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420694

RESUMO

ABHD12 metabolizes bioactive lysophospholipids, including lysophosphatidylserine (lyso-PS). Deleterious mutations in human ABHD12 cause the neurological disease PHARC, and ABHD12-/- mice display PHARC-like phenotypes, including hearing loss, along with elevated brain lyso-PS and features of stimulated innate immune cell function. Here, we develop a selective and in vivo-active inhibitor of ABHD12 termed DO264 and show that this compound elevates lyso-PS in mouse brain and primary human macrophages. Unlike ABHD12-/- mice, adult mice treated with DO264 exhibited minimal perturbations in auditory function. On the other hand, both DO264-treated and ABHD12-/- mice displayed heightened immunological responses to lymphocytic choriomeningitis virus (LCMV) clone 13 infection that manifested as severe lung pathology with elevated proinflammatory chemokines. These results reveal similarities and differences in the phenotypic impact of pharmacological versus genetic blockade of ABHD12 and point to a key role for this enzyme in regulating immunostimulatory lipid pathways in vivo.


Assuntos
Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Coriomeningite Linfocítica/imunologia , Monoacilglicerol Lipases/antagonistas & inibidores , Ureia/análogos & derivados , Ureia/farmacologia , Adulto , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Feminino , Humanos , Coriomeningite Linfocítica/tratamento farmacológico , Coriomeningite Linfocítica/patologia , Lisofosfolipídeos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/imunologia
15.
Nat Methods ; 13(10): 883-889, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27617390

RESUMO

Phenotype-based small-molecule screening is a powerful method to identify molecules that regulate cellular functions. However, such screens are generally performed in vitro under conditions that do not necessarily model complex physiological conditions or disease states. Here, we use molecular cell barcoding to enable direct in vivo phenotypic screening of small-molecule libraries. The multiplexed nature of this approach allows rapid in vivo analysis of hundreds to thousands of compounds. Using this platform, we screened >700 covalent inhibitors directed toward hydrolases for their effect on pancreatic cancer metastatic seeding. We identified multiple hits and confirmed the relevant target of one compound as the lipase ABHD6. Pharmacological and genetic studies confirmed the role of this enzyme as a regulator of metastatic fitness. Our results highlight the applicability of this multiplexed screening platform for investigating complex processes in vivo.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Imagem Molecular/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Camundongos , Camundongos SCID , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/genética , Transplante de Neoplasias , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
16.
Proc Natl Acad Sci U S A ; 113(1): 26-33, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26668358

RESUMO

Diacylglycerol lipases (DAGLα and DAGLß) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLα is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.


Assuntos
Ácidos Araquidônicos/metabolismo , Encéfalo/efeitos dos fármacos , Diglicerídeos/metabolismo , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Glicerídeos/metabolismo , Lipase Lipoproteica/antagonistas & inibidores , Plasticidade Neuronal/efeitos dos fármacos , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Inibidores Enzimáticos/química , Lipase Lipoproteica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Canabinoides/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
J Pharmacol Exp Ther ; 363(3): 394-401, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28970359

RESUMO

Diacylglycerol lipase (DAGL) α and ß, the major biosynthetic enzymes of the endogenous cannabinoid (endocannabinoid) 2-arachidonylglycerol (2-AG), are highly expressed in the nervous system and immune system, respectively. Genetic deletion or pharmacological inhibition of DAGL-ß protects against lipopolysaccharide (LPS)-induced inflammatory responses in mouse peritoneal macrophages and reverses LPS-induced allodynia in mice. To gain insight into the contribution of DAGL-α in LPS-induced allodynia, we tested global knockout mice as well as DO34, a dual DAGL-α/ß inhibitor. Intraperitoneal administration of DO34 (30 mg/kg) significantly decreased whole-brain levels of 2-AG (∼83%), anandamide (∼42%), and arachidonic acid (∼58%). DO34 dose-dependently reversed mechanical and cold allodynia, and these antinociceptive effects did not undergo tolerance after 6 days of repeated administration. In contrast, DO34 lacked acute thermal antinociceptive, motor, and hypothermal pharmacological effects in naive mice. As previously reported, DAGL-ß (-/-) mice displayed a protective phenotype from LPS-induced allodynia. However, DAGL-α (-/-) mice showed full allodynic responses, similar to their wild-type littermates. Interestingly, DO34 (30 mg/kg) fully reversed LPS-induced allodynia in DAGL-α (+/+) and (-/-) mice, but did not affect the antinociceptive phenotype of DAGL-ß (-/-) mice in this model, indicating a DAGL-α-independent site of action. These findings suggest that DAGL-α and DAGL-ß play distinct roles in LPS-induced nociception. Whereas DAGL-α appears to be dispensable for the development and expression of LPS-induced nociception, DAGL-ß inhibition represents a promising strategy to treat inflammatory pain.


Assuntos
Analgésicos/farmacologia , Lipopolissacarídeos/farmacologia , Lipase Lipoproteica/antagonistas & inibidores , Dor/enzimologia , Tiazóis/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Analgésicos/uso terapêutico , Animais , Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Tolerância a Medicamentos , Endocanabinoides/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/fisiopatologia , Inflamação/psicologia , Lipase Lipoproteica/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/fisiopatologia , Dor/psicologia , Tiazóis/uso terapêutico , Ureia/uso terapêutico
18.
Bioorg Med Chem Lett ; 25(13): 2645-9, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25980911

RESUMO

We have developed a selective method for the enrichment of O-linked ß-N-acetylglucosamine (O-GlcNAc)-modified peptides, which uses a newly synthesized thiol-alkyne and a thiol-disulfide exchange. First, O-GlcNAc-modified peptides were enzymatically labeled with an azide-containing GalNAc analog. Then, the azide moiety was reacted with thiol-alkyne through a copper(I)-catalyzed azide-alkyne cycloaddition. The thiol-modified peptides were enriched with thiol-reactive resin through a thiol-disulfide exchange. At least 500fmol of O-GlcNAc-modified peptides was selectively isolated from α-crystallin tryptic peptides and detected by mass spectrometry. This novel enrichment strategy could be used for O-GlcNAcome analysis of biological samples.


Assuntos
Dissulfetos/química , Glicopeptídeos/química , Acetilglucosamina/química , Alcinos/química , Sequência de Aminoácidos , Glicopeptídeos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , alfa-Cristalinas/química
19.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464067

RESUMO

Chemical proteomics enables the global assessment of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, been limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically-defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these 'photo-stereoprobes' interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible nanoBRET assays. Integrated phenotypic analysis and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and discovering and characterizing bioactive small molecules by cell-based screening.

20.
Med Mol Morphol ; 45(4): 238-42, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23224604

RESUMO

A 77-year-old man developed pulmonary tumor thrombotic microangiopathy (PTTM) 2 days after undergoing transurethral resection for urothelial carcinoma (G3) of the urinary bladder and died of respiratory failure 6 days later. Histological findings demonstrated marked intimal fibrocellular proliferation, fibrin thrombi, and both cancer cells and fibrin thrombi in the arteries of the lungs, findings consistent with PTTM. Prominent stenosis in arteries smaller than 300 µm was also seen. The Ki-67 labeling index of primary and metastasized cancer cells was 62.4 % and 70.2 %, respectively. The membranes of metastasized cancer cells expressed E-cadherin, similar to membranes in the urinary bladder. An aggressive PTTM course is affected by intimal fibrocellular proliferation and the high cell proliferation of cancer cells. Furthermore, prominent stenosis in small arteries and membranous staining of E-cadherin of metastasized cells suggest that cancer cells formed clusters by maintaining adhesion molecules and migrated into the arteries of the lungs, where they easily caused damage to the endothelium of small arteries, in contrast to dispersed cancer cells.


Assuntos
Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/patologia , Microangiopatias Trombóticas/patologia , Neoplasias da Bexiga Urinária/cirurgia , Idoso , Autopsia , Caderinas/metabolismo , Constrição Patológica , Cistectomia/métodos , Humanos , Neoplasias Pulmonares/secundário , Masculino , Microangiopatias Trombóticas/etiologia , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA