Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Endocr Disord ; 21(1): 165, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391409

RESUMO

BACKGROUND: Betel-nut consumption is the fourth most common addictive habit globally and there is good evidence linking the habit to obesity, type 2 diabetes (T2D) and the metabolic syndrome. The aim of our pilot study was to identify gene expression relevant to obesity, T2D and the metabolic syndrome using a genome-wide transcriptomic approach in a human monocyte cell line incubated with arecoline and its nitrosated products. RESULTS: The THP1 monocyte cell line was incubated separately with arecoline and 3-methylnitrosaminopropionaldehyde (MNPA) in triplicate for 24 h and pooled cDNA indexed paired-end libraries were sequenced (Illumina NextSeq 500). After incubation with arecoline and MNPA, 15 and 39 genes respectively had significant changes in their expression (q < 0.05, log fold change 1.5). Eighteen of those genes have reported associations with T2D and obesity in humans; of these genes there was most marked evidence for CLEC10A, MAPK8IP1, NEGR1, NQ01 and INHBE genes. CONCLUSIONS: Our preliminary studies have identified a large number of genes relevant to obesity, T2D and metabolic syndrome whose expression was changed significantly in human TPH1 cells following incubation with betel-nut derived arecoline or with MNPA. These findings require validation by further cell-based work and investigation amongst betel-chewing communities.


Assuntos
Areca/química , Arecolina/farmacologia , Diabetes Mellitus Tipo 2/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Síndrome Metabólica/genética , Monócitos/metabolismo , Obesidade/genética , Transcriptoma/efeitos dos fármacos , Biomarcadores/análise , Biomarcadores/metabolismo , Seguimentos , Humanos , Monócitos/efeitos dos fármacos , Monócitos/patologia , Projetos Piloto , Prognóstico
2.
Epigenetics ; 17(10): 1219-1233, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34818986

RESUMO

Vitamin B12 has multiple biochemical functions including in the one-carbon cycle generating a methyl group for DNA methylation, and metabolism of fatty acids and amino acids to generate energy via the citric acid cycle. The aim of our study was to use a combined epigenomic and transcriptomic approach to identify novel genes mediating the effect of B12 on adipogenesis.Human pre-adipocytes (CHUB-S7) were treated with a range of B12 (0-500 nM) concentrations from the day of cell seeding until harvesting in discovery and validation experiments prior to genome-wide methylation analysis using the Illumina HumanMethylation 450Beadchip. For transcriptomic analysis, RNA-seq libraries were run on the Illumina HiSeq 2500. To further investigate the expression of any genes on human adipogenesis, a second human preadipocyte strain was studied (SGBS) by real-time quantitative PCR (qRT-PCR).A combined epigenetic and transcriptomic approach in differentiated human pre-adipocyte cell line, CHUB-S7, identified that the Human cartilage chitinase 3-like protein 2 (CHI3L2) gene was hypo-methylated and had increased expression in low B12 conditions. Furthermore, there was an approximately 1000-fold increase in CHI3L2 expression in the early days of adipocyte differentiation, which paralleled an increase of lipid droplets in differentiated SGBS cells and an increased expression level of markers of mature adipocytes.In summary, we have identified a potential role of the human cartilage chitinase 3-like protein 2 (CHI3L2) in adipocyte function in the presence of low B12 levels.


Assuntos
Quitinases , Adipócitos/metabolismo , Adipogenia/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Cartilagem/metabolismo , Diferenciação Celular/genética , Quitinases/genética , Quitinases/metabolismo , Quitinases/farmacologia , Metilação de DNA , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Humanos , Transcriptoma , Vitamina B 12/metabolismo , Vitamina B 12/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA